Дана функция распределения найти вероятность. Математическое ожидание непрерывной случайной величины

4. Плотность распределения вероятностей непрерывной случайной величины

Непрерывную случайную величину можно задать с помощью функции распределения F (x ) . Этот способ задания не является единственным. Непрерывную случайную величину можно также задать, используя другую функцию, которую называют плотностью распределения или плотностью вероятности (иногда её называют дифференциальной функцией).

Определение4.1: Плотностью распределения непрерывной случайной величины Х называют функцию f (x ) - первую производную от функции распределения F (x ) :

f ( x ) = F "( x ) .

Из этого определения следует, что функция распределения является первообразной для плотности распределения. Заметим, что для описания распределения вероятностей дискретной случайной величины плотность распределения неприменима.

Вероятность попадания непрерывной случайной величины в заданный интервал

Зная плотность распределения, можно вычислить вероятность того, что непрерывная случайная величина примет значение, принадлежащее заданному интервалу.

Теорема: Вероятность того, что непрерывная случайная величина Х примет значение, принадлежащие интервалу (a , b ), равна определённому интегралу от плотности распределения, взятому в пределах от a до b :

Доказательство: Используем соотношение

P (a X b ) = F (b ) – F (a ).

По формуле Ньютона-Лейбница,

Таким образом,

.

Так как P (a X b )= P (a X b ) , то окончательно получим

.

Геометрически полученный результат можно истолковать так: вероятность того, что непрерывная случайная величина примет значение, принадлежащее интервалу (a , b ), равна площади криволинейной трапеции, ограниченной осью Ox , кривой распределения f (x ) и прямыми x = a и x = b .

Замечание: В частности, если f (x ) – чётная функция и концы интервала симметричны относительно начала координат, то

.

Пример. Задана плотность вероятности случайной величины Х

Найти вероятность того, что в результате испытания Х примет значение, принадлежащие интервалу (0,5; 1).

Решение: Искомая вероятность

.

Нахождение функции распределения по известной плотности распределения

Зная плотность распределения f (x ) , можно найти функцию распределения F (x ) по формуле

.

Действительно, F (x ) = P (X x ) = P (-∞ X x ) .

Следовательно,

.

Таким образом, зная плотность распределения, можно найти функцию распределения. Разумеется, по известной функции распределения можно найти плотность распределения , а именно:

f (x ) = F "(x ).

Пример. Найти функцию распределения по данной плотности распределения:

Решение: Воспользуемся формулой

Если x a , то f (x ) = 0 , следовательно, F (x ) = 0 . Если a , то f(x) = 1/(b-a) ,

следовательно,

.

Если x > b , то

.

Итак, искомая функция распределения

Замечание: Получили функцию распределения равномерно распределенной случайной величины (см. равномерное распределение).

Свойства плотности распределения

Свойство 1: Плотность распределения - неотрицательная функция:

f ( x ) ≥ 0 .

Свойство 2: Несобственный интеграл от плотности распределения в пределах от -∞ до ∞ равен единице:

.

Замечание: График плотности распределения называют кривой распределения .

Замечание: Плотность распределения непрерывной случайной величины также называют законом распределения.

Пример. Плотность распределения случайной величины имеет следующий вид:

Найти постоянный параметр a .

Решение: Плотность распределения должна удовлетворять условию , поэтому потребуем, чтобы выполнялось равенство

.

Отсюда
. Найдём неопределённый интеграл:

.

Вычислим несобственный интеграл:

Таким образом, искомый параметр

.

Вероятный смысл плотности распределения

Пусть F (x ) – функция распределения непрерывной случайной величины X . По определению плотности распределения, f (x ) = F "(x ) , или

Разность F (x +∆х) - F (x ) определяет вероятность того, что X примет значение, принадлежащее интервалу (x , x +∆х) . Таким образом, предел отношения вероятности того, что непрерывная случайная величина примет значение, принадлежащее интервалу (x , x +∆х) , к длине этого интервала (при ∆х→0 ) равен значению плотности распределения в точке х .

Итак, функция f (x ) определяет плотность распределения вероятности для каждой точки х . Из дифференциального исчисления известно,что приращение функции приближенно равно дифференциалу функции, т.е.

Так как F "(x ) = f (x ) и dx = ∆ x , то F (x +∆ x ) - F (x ) ≈ f (x )∆ x .

Вероятностный смысл этого равенства таков: вероятность того, что случайная величина примет значение принадлежащее интервалу (x , x +∆ x ) ,приближенно равна произведению плотности вероятности в точке х на длину интервала ∆х .

Геометрически этот результат можно истолковать так : вероятность того, что случайная величина примет значение принадлежащее интервалу (x , x +∆ x ) ,приближенно равна площади прямоугольника с основанием ∆х и высотой f (x ).

5. Типовые распределения дискретных случайных величин

5.1. Распределение Бернулли

Определение5.1: Случайная величина X , принимающая два значения 1 и 0 с вероятностями (“успеха”) p и (“неуспеха”) q , называется Бернуллиевской :

, где k =0,1.

5.2. Биномиальное распределение

Пусть производится n независимых испытаний, в каждом из которых событие A может появиться или не появиться. Вероятность наступления события во всех испытаниях постоянна и равна p (следовательно, вероятность непоявления q = 1 - p ).

Рассмотрим случайную величину X – число появлений события A в этих испытаниях. Случайная величина X принимает значения 0,1,2,… n с вероятностями, вычисленными по формуле Бернулли: , где k = 0,1,2,… n .

Определение5.2: Биномиальным называют раcпределение вероятностей, определяемое формулой Бернулли.

Пример. По мишени производится три выстрела, причем вероятность попадания при каждом выстреле равна 0,8. Рассматривается случайная величина X – число попаданий в мишень. Найти ее ряд распределения.

Решение: Случайная величина X принимает значения 0,1,2,3 с вероятностями, вычисленными по формуле Бернулли, где n = 3, p = 0,8 (вероятность попадания), q = 1 - 0,8 = = 0,2 (вероятность непопадания).

Таким образом, ряд распределения имеет следующий вид:

Пользоваться формулой Бернулли при больших значениях n достаточно трудно, поэтому для подсчета соответствующих вероятностей используют локальную теорему Лапласа, которая позволяет приближенно найти вероятность появления события ровно k раз в n испытаниях, если число испытаний достаточно велико.

Локальная теорема Лапласа : Если вероятность p появления события A
того, что событие A появится в n испытаниях ровно k раз, приближенно равна (тем точнее, чем больше n ) значению функции
, где
, .

Замечание1: Таблицы, в которых помещены значения функции
, даны в приложении 1, причем
. Функция является плотностью стандартного нормального распределения (смотри нормальное распределение).

Пример: Найти вероятность того, что событие A наступит ровно 80 раз в 400 испытаниях, если вероятность появления этого события в каждом испытании равна 0,2.

Решение: По условию n = 400, k = 80, p = 0,2 , q = 0,8 . Вычислим определяемое данными задачи значение x :
. По таблице приложения 1 находим
. Тогда искомая вероятность будет:

Если нужно вычислить вероятность того, что событие A появится в n испытаниях не менее k 1 раз и не более k 2 раз, то нужно использовать интегральную теорему Лапласа:

Интегральная теорема Лапласа : Если вероятность p появления события A в каждом испытании постоянна и отлична от нуля и единицы, то вероятность того, что событие A появится в n испытаниях от k 1 до k 2 раз, приближенно равна определенному интегралу

, где
и
.

Другими словами, вероятность того, что событие A появится в n испытаниях от k 1 до k 2 раз, приближенно равна

где
,
и .

Замечание2: Функцию
называют функцией Лапласа (смотри нормальное распределение). Таблицы, в которых помещены значения функции , даны в приложении 2, причем
.

Пример: Найти вероятность того, что среди 400 случайно отобранных деталей окажется непроверенных от 70 до 100 деталей, если вероятность того, что деталь не прошла проверку ОТК, равна 0,2.

Решение: По условию n = 400, p = 0,2 , q = 0,8, k 1 = 70, k 2 = 100 . Вычислим нижний и верхний пределы интегрирования:

;
.

Таким образом, имеем:

По таблице приложения 2 находим, что
и
. Тогда искомая вероятность равна:

Замечание3: В сериях независимых испытаний (когда n велико, p мало) для вычисления вероятности наступления события ровно k раз используют формулу Пуассона (смотри распределение Пуассона).

5.3. Распределение Пуассона

Определение5.3: Дискретную случайную величину называют Пуассоновской, если ее закон распределения имеет следующий вид:

, где
и
(постоянное значение).

Примеры Пуассоновских случайных величин:

    Число вызовов на автоматическую станцию за промежуток времени T .

    Число частиц распада некоторого радиоактивного вещества за промежуток времени T .

    Число телевизоров, которые поступают в мастерскую за промежуток времени T в большом городе.

    Число автомобилей, которые поступят к стоп-линии перекрестка в большом городе.

Замечание1: Специальные таблицы для вычисления данных вероятностей приведены в приложении 3.

Замечание2: В сериях независимых испытаний (когда n велико, p мало) для вычисления вероятности наступления события ровно k раз используют формулу Пуассона:
, где
,
то есть среднее число появлений событий остается постоянным.

Замечание3: Если есть случайная величина, которая распределена по закону Пуассона, то обязательно есть случайная величина, которая распределена по показательному закону и, наоборот (см. Показательное распределение).

Пример. Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,0002 . Найти вероятность, что на базу прибудут ровно три негодных изделия.

Решение: По условию n = 5000, p = 0,0002, k = 3. Найдем λ: λ = np = 5000·0,0002 = 1 .

По формуле Пуассона искомая вероятность равна:

, где случайная величина X – число негодных изделий.

5.4. Геометрическое распределение

Пусть производятся независимые испытания, в каждом из которых вероятность появления события А равна p (0 p

q = 1 - p . Испытания заканчиваются, как только появится событие А . Таким образом, если событие А появилось в k -м испытании, то в предшествующих k – 1 испытаниях оно не появлялось.

Обозначим через Х дискретную случайную величину – число испытаний, которые нужно провести до первого появления события А . Очевидно, возможными значениями Х являются натуральные числа х 1 = 1, х 2 = 2, …

Пусть в первых k -1 испытаниях событие А не наступило, а в k -м испытании появилось. Вероятность этого “сложного события”, по теореме умножения вероятностей независимых событий, P (X = k ) = q k -1 p .

Определение5.4: Дискретная случайная величина имеет геометрическое распределение , если ее закон распределения имеет следующий вид:

P ( X = k ) = q k -1 p , где
.

Замечание1: Полагая k = 1,2,… , получим геометрическую прогрессию с первым членом p и знаменателем q (0q . По этой причине распределение называют геометрическим.

Замечание2: Ряд
сходится и сумма его равна единице. Действительно сумма ряда равна
.

Пример. Из орудия производится стрельба по цели до первого попадания. Вероятность попадания в цель p = 0,6 . Найти вероятность того, что попадание произойдет при третьем выстреле.

Решение: По условию p = 0,6, q = 1 – 0,6 = 0,4, k = 3. Искомая вероятность равна:

P (X = 3) = 0,4 2 ·0,6 = 0,096.

5.5. Гипергеометрическое распределение

Рассмотрим следующую задачу. Пусть в партии из N изделий имеется M стандартных (M N ). Из партии случайно отбирают n изделий (каждое изделие может быть извлечено с одинаковой вероятностью), причем отобранное изделие перед отбором следующего не возвращается в партию (поэтому формула Бернулли здесь не применима).

Обозначим через X случайную величину – число m стандартных изделий среди n отобранных. Тогда возможными значениями X будут 0, 1, 2,…, min ; обозначим их и, ... по значениям независимой переменной (Fonds) воспользуемся кнопкой (раздел ...

  • Учебно-методический комплекс по дисциплине «Общий психологический практикум»

    Учебно-методический комплекс

    ... методические указания по выполнению практических работ 5.1 Методические рекомендации по выполнению учебных проектов 5.2 Методические рекомендации по ... чувствительности), одномерного и многомерного... случайного компонента в величине ... с разделом «Представление...

  • Учебно-методический комплекс по дисциплине физика (название)

    Учебно-методический комплекс

    ... разделов в учебниках. Решение задач по каждой теме. Проработка методических указаний к лабораторным работам по ... случайной и приборной погрешности измерений 1.8 Тематика контрольных работ и методические указания по ... Частица в одномерной потенциальной яме. ...

  • Методические указания к лабораторным работам по дисциплине информатика

    Методические указания

    ... Методические указания к ЛАБОРАТОРНым РАБОТАМ по ... величиной , а наибольшей суммой величин ... массива случайными числами... 3.0 4.0 3.0 -2.5 14.3 16.2 18.0 1.0 а) одномерный массив б) двумерный массив Рис. 2– Файлы... описываются в разделе реализации после...

  • Числовые характеристики непрерывных случайных величин. Пусть непрерывная случайная величина Х задана функцией распределения f(x)

    Пусть непрерывная случайная величина Х задана функцией распределения f(x) . Допустим, что все возможные значения случайной величины принадлежат отрезку [a,b ].

    Определение. Математическим ожиданием непрерывной случайной величины Х, возможные значения которой принадлежат отрезку , называется определенный интеграл

    Если возможные значения случайной величины рассматриваются на всей числовой оси, то математическое ожидание находится по формуле:

    При этом, конечно, предполагается, что несобственный интеграл сходится.

    Определение. Дисперсией непрерывной случайной величины называется математическое ожидание квадрата ее отклонения.

    По аналогии с дисперсией дискретной случайной величины, для практического вычисления дисперсии используется формула:

    Определение. Средним квадратичным отклонением называется квадратный корень из дисперсии.

    Определение. Модой М 0 дискретной случайной величины называется ее наиболее вероятное значение. Для непрерывной случайной величины мода – такое значение случайной величины, при которой плотность распределения имеет максимум.

    Если многоугольник распределения для дискретной случайной величины или кривая распределения для непрерывной случайной величины имеет два или несколько максимумов, то такое распределение называется двухмодальным или многомодальным . Если распределение имеет минимум, но не имеет максимума, то оно называется антимодальным .

    Определение. Медианой M D случайной величины Х называется такое ее значение, относительно которого равновероятно получение большего или меньшего значения случайной величины.

    Геометрически медиана – абсцисса точки, в которой площадь, ограниченная кривой распределения делится пополам. Отметим, что если распределение одномодальное, то мода и медиана совпадают с математическим ожиданием.

    Определение. Начальным моментом порядка k случайной величины Х называется математическое ожидание величины Х k .

    Для дискретной случайной величины: .

    .

    Начальный момент первого порядка равен математическому ожиданию.

    Определение. Центральным моментом порядка k случайной величины Х называется математическое ожидание величины

    Для дискретной случайной величины: .

    Для непрерывной случайной величины: .

    Центральный момент первого порядка всегда равен нулю, а центральный момент второго порядка равен дисперсии. Центральный момент третьего порядка характеризует асимметрию распределения.

    Определение. Отношение центрального момента третьего порядка к среднему квадратическому отклонению в третьей степени называется коэффициентом асимметрии .

    Определение. Для характеристики островершинности и плосковершинности распределения используется величина, называемая эксцессом .

    Кроме рассмотренных величин используются также так называемые абсолютные моменты:

    Абсолютный начальный момент: . Абсолютный центральный момент: . Абсолютный центральный момент первого порядка называется средним арифметическим отклонением .

    Пример. Для рассмотренного выше примера определить математическое ожидание и дисперсию случайной величины Х.

    Пример. В урне 6 белых и 4 черных шара. Из нее пять раз подряд извлекают шар, причем каждый раз вынутый шар возвращают обратно и шары перемешивают. Приняв за случайную величину Х число извлеченных белых шаров, составить закон распределения этой величины, определить ее математическое ожидание и дисперсию.

    Т.к. шары в каждом опыте возвращаются обратно и перемешиваются, то испытания можно считать независимыми (результат предыдущего опыта не влияет на вероятность появления или непоявления события в другом опыте).

    Таким образом, вероятность появления белого шара в каждом опыте постоянна и равна

    Таким образом, в результате пяти последовательных испытаний белый шар может не появиться вовсе, появиться один раз, два, три, четыре или пять раз. Для составления закона распределения надо найти вероятности каждого из этих событий.

    1) Белый шар не появился вовсе:

    2) Белый шар появился один раз:

    3) Белый шар появиться два раза: .

    СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

    Пример 2.1. Случайная величина X задана функцией распределения

    Найти вероятность того, что в результате испытания X примет значения, заключенные в промежутке (2,5; 3,6).

    Решение: Х в промежуток (2,5; 3,6) можно определить двумя способами:

    Пример 2.2. При каких значениях параметров А и В функция F (x ) = A + Be - x может быть функцией распределения для неотрицательных значений случайной величины Х .

    Решение: Так как все возможные значения случайной величины Х принадлежат интервалу , то для того, чтобы функция была функцией распределения для Х , должно выполняться свойство:

    .

    Ответ: .

    Пример 2.3. Случайная величина X задана функцией распределения

    Найти вероятность того, что в результате четырех независимых испытаний величина X ровно 3 раза примет значение, принадлежащее интервалу (0,25;0,75).

    Решение: Вероятность попадания величины Х в промежуток (0,25;0,75) найдем по формуле:

    Пример 2.4. Вероятность попадания мячом в корзину при одном броске равна 0,3. Составить закон распределения числа попаданий при трех бросках.

    Решение: Случайная величина Х – число попаданий в корзину при трех бросках – может принимать значения: 0, 1, 2, 3. Вероятности того, что Х

    Х :

    Пример 2.5. Два стрелка делают по одному выстрелу в мишень. Вероятность попадания в нее первым стрелком равна 0,5, вторым – 0,4. Составить закон распределения числа попаданий в мишень.

    Решение: Найдем закон распределения дискретной случайной величины Х – числа попаданий в мишень. Пусть событие – попадание в мишень первым стрелком, а – попадание вторым стрелком, и - соответственно их промахи.



    Составим закон распределения вероятностей СВ Х :

    Пример 2.6. Испытываются 3 элемента, работающих независимо друг от друга. Длительности времени (в часах) безотказной работы элементов имеют функции плотности распределения: для первого: F 1 (t ) =1-e - 0,1 t , для второго: F 2 (t ) = 1-e - 0,2 t , для третьего: F 3 (t ) =1-e - 0,3 t . Найти вероятность того, что в интервале времени от 0 до 5 часов: откажет только один элемент; откажут только два элемента; откажут все три элемента.

    Решение: Воспользуемся определением производящей функции вероятностей :

    Вероятность того, что в независимых испытаниях, в первом из которых вероятность появления события А равна , во втором и т. д., событие А появится ровно раз, равна коэффициенту при в разложении производящей функции по степеням . Найдем вероятности отказа и неотказа соответственно первого, второго и третьего элемента в интервале времени от 0 до 5 часов:

    Составим производящую функцию:

    Коэффициент при равен вероятности того, что событие А появится ровно три раза, то есть вероятности отказа всех трех элементов; коэффициент при равен вероятности того, что откажут ровно два элемента; коэффициент при равен вероятности того, что откажет только один элемент.

    Пример 2.7. Дана плотность вероятности f (x )случайной величины X :

    Найти функцию распределения F(x).

    Решение: Используем формулу:

    .

    Таким образом, функция распределения имеет вид:

    Пример 2.8. Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте.

    Решение: Случайная величина Х – число элементов, отказавших в одном опыте – может принимать значения: 0, 1, 2, 3. Вероятности того, что Х примет эти значения, найдем по формуле Бернулли:

    Таким образом, получаем следующий закон распределения вероятностей случайной величины Х :

    Пример 2.9. В партии из 6 деталей имеется 4 стандартных. Наудачу отобраны 3 детали. Составить закон распределения числа стандартных деталей среди отобранных.

    Решение: Случайная величина Х – число стандартных деталей среди отобранных – может принимать значения: 1, 2, 3 и имеет гипергеометрическое распределение. Вероятности того, что Х

    где -- число деталей в партии;

    -- число стандартных деталей в партии;

    число отобранных деталей;

    -- число стандартных деталей среди отобранных.

    .

    .

    .

    Пример 2.10. Случайная величина имеет плотность распределения

    причем и не известны, но , а и . Найдите и .

    Решение: В данном случае случайная величина X имеет треугольное распределение (распределение Симпсона) на отрезке [a, b ]. Числовые характеристики X :

    Следовательно, . Решая данную систему, получим две пары значений: . Так как по условию задачи , то окончательно имеем: .

    Ответ: .

    Пример 2.11. В среднем по 10% договоров страховая компания выплачивает страховые суммы в связи с наступлением страхового случая. Вычислить математическое ожидание и дисперсию числа таких договоров среди наудачу выбранных четырех.

    Решение: Математическое ожидание и дисперсию можно найти по формулам:

    .

    Возможные значения СВ (число договоров (из четырех) с наступлением страхового случая): 0, 1, 2, 3, 4.

    Используем формулу Бернулли, чтобы вычислить вероятности различного числа договоров (из четырех), по которым были выплачены страховые суммы:

    .

    Ряд распределения СВ (число договоров с наступлением страхового случая) имеет вид:

    0,6561 0,2916 0,0486 0,0036 0,0001

    Ответ: , .

    Пример 2.12. Из пяти роз две белые. Составить закон распределения случайной величины, выражающей число белых роз среди двух одновременно взятых.

    Решение: В выборке из двух роз может либо не оказаться белой розы, либо может быть одна или две белые розы. Следовательно, случайная величина Х может принимать значения: 0, 1, 2. Вероятности того, что Х примет эти значения, найдем по формуле:

    где -- число роз;

    -- число белых роз;

    число одновременно взятых роз;

    -- число белых роз среди взятых.

    .

    .

    .

    Тогда закон распределения случайной величины будет такой:

    Пример 2.13. Среди 15 собранных агрегатов 6 нуждаются в дополнительной смазке. Составить закон распределения числа агрегатов, нуждающихся в дополнительной смазке, среди пяти наудачу выбранных из общего числа.

    Решение: Случайная величина Х – число агрегатов, нуждающихся в дополнительной смазке среди пяти выбранных – может принимать значения: 0, 1, 2, 3, 4, 5 и имеет гипергеометрическое распределение. Вероятности того, что Х примет эти значения, найдем по формуле:

    где -- число собранных агрегатов;

    -- число агрегатов, нуждающихся в дополнительной смазке;

    число выбранных агрегатов;

    -- число агрегатов, нуждающихся в дополнительной смазке среди выбранных.

    .

    .

    .

    .

    .

    .

    Тогда закон распределения случайной величины будет такой:

    Пример 2.14. Из поступивших в ремонт 10 часов 7 нуждаются в общей чистке механизма. Часы не рассортированы по виду ремонта. Мастер, желая найти часы, нуждающиеся в чистке, рассматривает их поочередно и, найдя такие часы, прекращает дальнейший просмотр. Найти математическое ожидание и дисперсию числа просмотренных часов.

    Решение: Случайная величина Х – число агрегатов, нуждающихся в дополнительной смазке среди пяти выбранных – может принимать значения: 1, 2, 3, 4. Вероятности того, что Х примет эти значения, найдем по формуле:

    .

    .

    .

    .

    Тогда закон распределения случайной величины будет такой:

    Теперь вычислим числовые характеристики величины :

    Ответ: , .

    Пример 2.15. Абонент забыл последнюю цифру нужного ему номера телефона, однако помнит, что она нечетная. Найти математическое ожидание и дисперсию числа сделанных им наборов номера телефона до попадания на нужный номер, если последнюю цифру он набирает наудачу, а набранную цифру в дальнейшем не набирает.

    Решение: Случайная величина может принимать значения: . Так как набранную цифру абонент в дальнейшем не набирает, то вероятности этих значений равны .

    Составим ряд распределения случайной величины:

    0,2

    Вычислим математическое ожидание и дисперсию числа попыток набора номера:

    Ответ: , .

    Пример 2.16. Вероятность отказа за время испытаний на надежность для каждого прибора серии равна p . Определить математическое ожидание числа приборов, давших отказ, если испытанию подверглись N приборов.

    Решение: Дискретная случайная величина X - число отказавших приборов в N независимых испытаниях, в каждом из которых вероятность появления отказа равна p, распределена по биномиальному закону. Математическое ожидание биномиального распределения равно произведению числа испытаний на вероятность появления события в одном испытании:

    Пример 2.17. Дискретная случайная величина X принимает 3 возможных значения: с вероятностью ; с вероятностью и с вероятностью . Найти и , зная, что M(X ) = 8.

    Решение: Используем определения математического ожидания и закона распределения дискретной случайной величины:

    Находим: .

    Пример 2.18. Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0,9. В каждой партии содержится 5 изделий. Найти математическое ожидание случайной величины X – числа партий, в каждой из которых содержится ровно 4 стандартных изделия, если проверке подлежат 50 партий.

    Решение: В данном случае все проводимые опыты независимы, а вероятности того, что в каждой партии содержится ровно 4 стандартных изделия, одинаковы, следовательно, математическое ожидание можно определить по формуле:

    ,

    где - число партий;

    Вероятность того, что в партии содержится ровно 4 стандартных изделия.

    Вероятность найдем по формуле Бернулли:

    Ответ: .

    Пример 2.19. Найти дисперсию случайной величины X – числа появлений события A в двух независимых испытаниях, если вероятности появления события в этих испытаниях одинаковы и известно, что M (X ) = 0,9.

    Решение: Задачу можно решить двумя способами.

    1) Возможные значения СВ X : 0, 1, 2. По формуле Бернулли определим вероятности этих событий:

    , , .

    Тогда закон распределения X имеет вид:

    Из определения математического ожидания определим вероятность :

    Найдем дисперсию СВ X :

    .

    2) Можно использовать формулу:

    .

    Ответ: .

    Пример 2.20. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины X соответственно равны 20 и 5. Найти вероятность того, что в результате испытания X примет значение, заключенное в интервале (15; 25).

    Решение: Вероятность попадания нормальной случайной величины Х на участок от до выражается через функцию Лапласа:

    Пример 2.21. Дана функция:

    При каком значении параметра C эта функция является плотностью распределения некоторой непрерывной случайной величины X ? Найти математическое ожиданий и дисперсию случайной величины X .

    Решение: Для того, чтобы функция была плотностью распределения некоторой случайной величины , она должна быть неотрицательна, и она должна удовлетворять свойству:

    .

    Следовательно:

    Вычислим математическое ожидание по формуле:

    .

    Вычислим дисперсию по формуле:

    T равна p . Необходимо найти математическое ожидание и дисперсию этой случайной величины.

    Решение: Закон распределения дискретной случайной величины X - числа появлений события в независимых испытаниях, в каждом из которых вероятность появления события равна , называют биномиальным. Математическое ожидание биномиального распределения равно произведению числа испытаний на вероятность появления события А одном испытании:

    .

    Пример 2.25. Производится три независимых выстрела по мишени. Вероятность попадания при каждом выстреле равна 0.25. Определить среднее квадратическое отклонение числа попаданий при трех выстрелах.

    Решение: Так как производится три независимых испытания, и вероятность появления события А (попадания) в каждом испытании одинакова, то будем считать, что дискретная случайная величина X - число попаданий в мишень – распределена по биномиальному закону.

    Дисперсия биномиального распределения равна произведению числа испытаний на вероятности появления и непоявления события в одном испытании:

    Пример 2.26. Среднее число клиентов, посещающих страховую компанию за 10 мин., равно трем. Найти вероятность того, что в ближайшие 5 минут придет хотя бы один клиент.

    Среднее число клиентов, пришедших за 5 минут: . .

    Пример 2.29. Время ожидания заявки в очереди на процессор подчиняется показательному закону распределения со средним значением 20 секунд. Найти вероятность того, что очередная (произвольная) заявка будет ожидать процессор более 35 секунд.

    Решение: В этом примере математическое ожидание , а интенсивность отказов равна .

    Тогда искомая вероятность:

    Пример 2.30. Группа студентов в количестве 15 человек проводит собрание в зале, в котором 20 рядов по 10 мест в каждом. Каждый студент занимает место в зале случайным образом. Какова вероятность того, что не более трех человек будут находиться на седьмом месте ряда?

    Решение:

    Пример 2.31.

    Тогда согласно классическому определению вероятности:

    где -- число деталей в партии;

    -- число нестандартных деталей в партии;

    число отобранных деталей;

    -- число нестандартных деталей среди отобранных.

    Тогда закон распределения случайной величины будет такой.

    В отличие от дискретной случайной величины непрерывные случайные величины невозможно задать в виде таблицы ее закона распределения поскольку невозможно перечислить и выписать в определенной последовательностей все ее значения. Одним из возможных способов задания непрерывной случайной величины является использование функции распределения.

    ОПРЕДЕЛЕНИЕ. Функцией распределения называют функцию, определяющую вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х, т.е.

    Иногда вместо термина «Функция распределения» используют термин «Интегральная функция».

    Свойства функции распределения:

    1. Значения функции распределения принадлежит отрезку : 0F(x)1
    2. F(x) - неубывающая функция, т.е. F(x 2)F(x 1), если x 2 >x 1

    Следствие 1. Вероятность того, что случайная величина примет значение, заключенное в интервале (a,b), равна приращению функции распределения на этом интервале:

    P(aX

    Пример 9. Случайная величина Х задана функцией распределения:

    Найти вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0;2): P(0

    Решение: Так как на интервале (0;2) по условию, F(x)=x/4+1/4, то F(2)-F(0)=(2/4+1/4)-(0/4+1/4)=1/2. Итак, P(0

    Следствие 2. Вероятность того, что непрерывная случайная величина Х примет одно определенное значение, равна нулю.

    Следствие 3. Если возможные значения случайной величины принадлежат интервалу (а;b), то: 1) F(x)=0 при xa; 2) F(x)=1 при xb.
    Справедливы следующие предельные соотношения:

    График функции распределения расположен в полосе, ограниченной прямыми у=0, у=1 (первое свойство). При возрастании х в интервале (а;b), в котором заключены все возможные значения случайной величины, график «подымается вверх». При xa ординаты графика равны нулю; при xb ординаты графика равны единице:


    Рисунок-1

    Пример 10. Дискретная случайная величина Х задана таблицей распределения:

    X 1 4 8
    P 0.3 0.1 0.6

    Найти функцию распределения и построить ее график.
    Решение: Функция распределения аналитически может быть записана так:


    Рисунок-2

    ОПРЕДЕЛЕНИЕ: Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) - первую производную от функции распределения F(x): f(x)=F"(x)

    Из этого определения следует, что функция распределения является первообразной для плотности распределения.

    Теорема. Вероятность того, что непрерывная случайная величина Х примет значение, принадлежащее интервалу (а;b) равна определенному интегралу от плотности распределения, взятому в пределах от а до b:

    (8)

    Свойства плотности распределения вероятностей:

    1. Плотность вероятностей является неотрицательной функцией: f(x)0.
    2. Определенный интеграл от -∞ до +∞ от плотности распределения вероятностей непрерывной случайной величины равен 1: f(x)dx=1.
    3. Определенный интеграл от -∞ до x от плотности распределения вероятностей непрерывной случайной величины равен функции распределения этой величины: f(x)dx=F(x)

    Пример 11. Задана плотность распределения вероятностей случайной величины Х

    Найти вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0,5;1).

    Решение: Искомая вероятность:

    Распространим определение числовых характеристик дискретных величин на величины непрерывные. Пусть непрерывная случайная величина Х задана плотностью распределения f(x).

    ОПРЕДЕЛЕНИЕ. Математическим ожиданием непрерывной случайной величины Х, возможные значения которой принадлежат отрезку , называют определенный интеграл:

    M(x)=xf(x)dx (9)

    Если возможные значения принадлежат всей оси Ох, то:

    M(x)=xf(x)dx (10)

    Модой M 0 (X) непрерывной случайной величины X называют то ее возможное значение, которому соответствует локальный максимум плотности распределения.

    Медианой M e (X) непрерывной случайной величины X называют то ее возможное значение, которое определяется равенством:

    P{X e (X)}=P{X>M e (X)}

    ОПРЕДЕЛЕНИЕ. Дисперсией непрерывной случайной величины называют математическое ожидание квадрата ее отклонения. Если возможные значения Х принадлежат отрезку , то:

    D(x)= 2 f(x)dx (11)
    или
    D(x)=x 2 f(x)dx- 2 (11*)

    Если возможные значения принадлежат всей оси х, то.

    Математическое ожидание

    Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

    Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

    Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

    Задана плотность распределения f(x) Задана функция распределения F(x)

    Задана плотность распределения f(x):

    Задана функция распределения F(x):

    Непрерывная случайна величина задана плотностью вероятностей
    (закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

    Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
    Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
    P(α < X < β)=F(β) - F(α)
    причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
    P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
    Плотностью распределения непрерывной случайной величины называется функция
    f(x)=F’(x) , производная от функции распределения.

    Свойства плотности распределения

    1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
    2. Условие нормировки:

    Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
    3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

    Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
    4. Функция распределения выражается через плотность следующим образом:

    Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть }