Образование мочевой кислоты биохимия. Мочевая кислота Отрывок, характеризующий Мочевая кислота

Казалось бы, такое вещество, как мочевая кислота, трудно сочетается с кровью. Вот в моче – другое дело, там ей место быть. Между тем, в организме постоянно идут различные обменные процессы с образованием солей, кислот, щелочей и других химических соединений, которые выводятся мочой и желудочно-кишечным трактом из организма, поступая туда из кровеносного русла.

Мочевая кислота (МК) тоже присутствует в крови, она образуется в небольших количествах из пуриновых оснований. Необходимые организму пуриновые основания, в основном, поступают извне, с пищевыми продуктами, и используются в синтезе нуклеиновых кислот, хотя в некоторых количествах вырабатываются организмом тоже. Что касается мочевой кислоты, то она является конечным продуктом пуринового обмена и сама по себе организму, в общем-то, не нужна. Ее повышенный уровень (гиперурикемия) указывает на нарушение пуринового обмена и может грозить отложением ненужных человеку солей в суставах и других тканях, вызывая не только неприятные ощущения, но и тяжелые болезни.

Норма мочевой кислоты и повышенная концентрация

Норма мочевой кислоты в крови у мужчин не должна превышать 7,0 мг/дл (70,0 мг/л) или находится в пределах 0,24 – 0,50 ммоль/л. У женщин норма несколько ниже – до 5,7 мг/дл (57 мг/л) или 0,16 – 0,44 ммоль/л соответственно.

Образованная в ходе пуринового обмена МК должна раствориться в плазме, чтобы в дальнейшем уйти через почки, однако плазма не может растворить мочевой кислоты более чем 0,42 ммоль/л. С мочой из организма в норме удаляется 2,36 – 5,90 ммоль/сутки (250 – 750 мг/сут).

При своей высокой концентрации мочевая кислота образует соль (урат натрия), которая откладывается в тофусы (своеобразные узелки) в различных видах тканей, обладающих сродством к МК. Чаще всего тофусы можно наблюдать на ушных раковинах, кистях рук, стопах, но излюбленным местом являются поверхности суставов (локоть, голеностоп) и сухожильные влагалища. В редких случаях они способны сливаться и образовывать язвы, из которых в виде белой сухой массы выходят кристаллы уратов. Иногда ураты обнаруживаются в синовиальных сумках, вызывая воспаление, боль, ограничение подвижности (синовит). Соли мочевой кислоты можно найти в костях с развитием деструктивных изменений костных тканей.

Уровень мочевой кислоты в крови зависит от ее продукции в ходе пуринового обмена, клубочковой фильтрации и реабсорбции, а также канальцевой секреции. Чаще всего повышенная концентрация МК является следствием неправильного питания, особенно, это касается людей, имеющих наследственную патологию (аутосомно-доминантные или связанные с Х-хромосомой ферментопатии), при которой увеличивается выработка мочевой кислоты в организме или замедляется ее выведение. Генетически обусловленная гиперурикемия называется первичной , вторичная вытекает из ряда других патологических состояний или формируется под воздействием образа жизни.

Таким образом, можно сделать вывод, что причинами повышения мочевой кислоты в крови (излишняя продукция или замедленное выведение) являются:

  • Генетический фактор;
  • Неправильное питание;
  • Почечная недостаточность (нарушение клубочковой фильтрации, уменьшение канальцевой секреции – МК из кровяного русла не переходит в мочу);
  • Ускоренный обмен нуклеотидов ( , лимфо- и миелопролиферативные болезни, гемолитическая ).
  • Применение салициловых препаратов и .

Главные причины повышения…

Одной из причин повышения мочевой кислоты в крови медицина называет неправильное питание, а именно, потребление неразумного количества продуктов, аккумулирующих пуриновые вещества. Это – копчености (рыба и мясо), консервы (особенно – шпроты), печень говяжья и свиная, почки, жареные мясные блюда, грибочки и другие всякие вкусности. Большая любовь к этим продуктам приводит к тому, что нужные организму пуриновые основания усваиваются, а конечный продукт – мочевая кислота, оказывается лишней.

Следует отметить, что продукты животного происхождения, играющие не последнюю роль в возрастании концентрации мочевой кислоты, поскольку несут пуриновые основания, как правило, содержат большое количество холестерина . Увлекаясь такими любимыми блюдами, не соблюдая меры, человек может наносить двойной удар по своему организму .

Диета, обедненная пуринами, состоит из молочных продуктов, груш и яблок, огурцов (не маринованных, конечно), ягод, картофеля и других овощей в свежем виде. Консервация, жарка или всякое «колдовство» над полуфабрикатами заметно ухудшают качество пищи в этом плане (содержание пуринов в еде и накопление мочевой кислоты в организме).

…И главные проявления

Лишняя мочевая кислота разносится по организму, где выражение ее поведения может иметь несколько вариантов:

  1. Кристаллы уратов откладываются и образуют микротофусы в хрящевых, костных и соединительных тканях, вызывая подагрические заболевания. Накопленные в хряще ураты, нередко освобождаются из тофусов. Обычно этому предшествует воздействие провоцирующих гиперурикемию факторов, например, новое поступление пуринов и, соответственно, мочевой кислоты. Кристаллы солей захватываются лейкоцитами (фагоцитоз) и обнаруживаются в синовиальной жидкости суставов (синовит). Это – острый приступ подагрического артрита .
  2. Ураты, попадая в почки, могут откладываться в интерстициальной почечной ткани и приводить к формированию подагрической нефропатии, а следом – и почечной недостаточности. Первыми симптомами болезни можно считать перманентно низкий удельный вес мочи с появлением в ней белка и повышение артериального давления (артериальная гипертензия), в дальнейшем происходят изменения органов выделительной системы, развивается пиелонефрит. Завершением процесса считают формирование почечной недостаточности .
  3. Повышенное содержание мочевой кислоты, образование солей (ураты и кальциевые конкременты) при ее задержке в почках + повышенная кислотность мочи в большинстве случаев приводит к развитию почечнокаменной болезни.

Все движения и превращения мочевой кислоты, обусловливающие ее поведение в целом, могут быть взаимосвязаны или существовать изолированно (как у кого пойдет).

Мочевая кислота и подагра

Рассуждая о пуринах, мочевой кислоте, диете, никак не получается обойти вниманием такую неприятную болезнь, как подагра . В большинстве случаев ее связывают с МК, к тому же редкой ее назвать трудно.

Подагра преимущественно развивается у лиц мужского пола зрелого возраста, иной раз имеет семейный характер. Повышенный уровень мочевой кислоты (гиперурикемия) в наблюдается задолго до появления симптомов заболевания.

Первый приступ подагры тоже яркостью клинической картины не отличается, всего-то – заболел большой палец какой-нибудь ноги, а дней через пять человек опять чувствует себя вполне здоровым и забывает об этом досадном недоразумении. Следующая атака может проявиться через большой промежуток времени и протекает более выраженно:

Лечить болезнь непросто, а иногда и не безобидно для организма в целом. Терапия, направленная на проявление патологических изменений включает:

  1. При остром приступе – колхицин, который снижает интенсивность болей, но склонен накапливаться в белых клетках крови, препятствовать их передвижению и фагоцитозу, а, следовательно, участию в воспалительном процессе. Колхицин угнетает кроветворение;
  2. Нестероидные противовоспалительные препараты – НПВП, обладающие обезболивающим и противовоспалительным эффектом, но негативно влияющие на органы пищеварительного тракта;
  3. Диакарб препятствует камнеобразованию (участвует в их растворении);
  4. Противоподагрические препараты пробенецид и сульфинпиразон способствуют усиленному выведению МК с мочой, но применяются с осторожностью при изменениях в мочевыводящих путях, параллельно назначают большое потребление жидкости, диакарб и отщелачивающие препараты. Аллопуринол снижает продукцию МК, способствует обратному развитию тофусов и исчезновению других симптомов подагры, поэтому, наверное, этот препарат один из лучших средств лечения подагры.

Эффективность лечения пациент может значительно повысить, если возьмется за диету, содержащую минимальное количество пуринов (только для нужд организма, а не для накопления).

Диета при гиперурикемии

Малокалорийная диета (лучше всего подходит стол №5, если у пациента все в порядке с весом), мясо и рыбка – без фанатизма, граммов 300 в недельку и не более. Это поможет больному снизить мочевую кислоту в крови, жить полноценной жизнью, не мучаясь приступами подагрического артрита. Пациентам с признаками этой болезни, имеющим лишний вес, рекомендуется использовать стол №8, не забывая разгружаться каждую неделю, но при этом помнить, что полное голодание запрещено. Отсутствие еды в самом начале диеты быстренько поднимет уровень МК и обострит процесс. А вот о дополнительном поступлении аскорбиновой кислоты и витаминов группы В следует подумать всерьез.

Все дни, пока будет длиться обострение заболевания, должны протекать без употребления мясных и рыбных блюд. Пища должна быть не твердой, впрочем, лучше вообще потреблять ее в жидком виде (молоко, фруктовые кисели и компоты, соки из фруктов и овощей, супы на овощном бульоне, каша-«размазня»). Кроме этого, пациент должен много пить (не меньше 2 литров в сутки).

Следует иметь в виду, что значительное количество пуриновых оснований имеется в таких деликатесах, как:

Напротив, минимальная концентрация пуринов отмечается в:

Это краткий список продуктов, которые запрещены или разрешены пациентам, обнаружившим первые признаки подагры и повышенную мочевую кислоту в анализе крови. Снизить мочевую кислоту в крови поможет вторая часть списка (молоко, овощи и фрукты).

Мочевая кислота понижена. Что это может значить?

Мочевая кислота в крови понижена, в первую очередь, при использовании противоподагрических средств, что абсолютно естественно, ведь они снижают синтез МК.

Кроме этого, причиной понижения уровня мочевой кислоты может стать уменьшение канальцевой реабсорбции, наследственно обусловленное снижение продукции МК и в редких случаях – гепатиты и анемия.

Между тем, пониженный уровень конечного продукта метаболизма пуринов (ровно, как и повышенный) в моче связан с более широким кругом патологических состояний, однако анализ мочи на содержание МК не такой уж и частый, он обычно интересует узких специалистов, занимающихся какой-то конкретной проблемой. Для самодиагностики пациентам он вряд ли может пригодиться.

Видео: мочевая кислота в суставах, мнение врача

1. Является мощным стимулятором центральной нервной системы, ингибируя фосфодиэстеразу, которая служит посредником действия гормонов адреналина и норадреналина. Мочевая кислота пролонгирует (продлевает) действие этих гормонов на ЦНС.

2. Обладает антиоксидантными свойствами – способна взаимодействовать со свободными радикалами.

Уровень мочевой кислоты в организме контролируется на генетическом уровне. Для людей с высоким уровнем мочевой кислоты характерен повышенный жизненный тонус.

Однако повышенное содержание мочевой кислоты в крови (гиперурикемия ) небезопасно. Сама мочевая кислота и, особенно, ее соли ураты (натриевые соли мочевой кислоты) плохо растворимы в воде. Даже при незначительном повышении концентрации они начинают начинают выпадать в осадок и кристаллизоваться, образуя камни. Кристаллы воспринимаются организмом как чужеродный объект. В суставах они фагоцитируются макрофагами, сами клетки при этом разрушаются, из них освобождаются гидролитические ферменты. Это приводит к воспалительной реакции, сопровождающейся сильнейшими болями в суставах. Такое заболевание называется подагра . Другое заболевание, при котором кристаллы уратов откладываются в почечной лоханке или в мочевом пузыре, известно как мочекаменная болезнь .

Для лечения подагры и мочекаменной болезни применяются:

    ингибиторы фермента ксантиноксидазы. Например, аллопуринол – вещество пуриновой природы, является конкурентным ингибитором фермента. Действие этого препарата приводит к повышению концентрации гипоксантина. Гипоксантин и его соли лучше растворимы в воде, и легче выводятся из организма.

    диетическое питание, исключающее продукты, богатые нуклеиновыми кислотами, пуринами и их аналогами: икра рыб, печень, мясо, кофе и чай.

    соли лития, поскольку они лучше растворимы в воде, чем ураты натрия.

Синтез нуклеиновых кислот синтез мононуклеотидов

Для синтеза мононуклеотидов de novo необходимы очень простые вещества: CO 2 и рибозо-5-фосфат (продукт 1-го этапа ГМФ-пути). Синтез происходит с затратой АТФ. Кроме этого, необходимы заменимые аминокислоты, которые синтезируются в организме, поэтому даже при полном голодании синтез нуклеиновых кислот не страдает.

РОЛЬ АМИНОКИСЛОТ В СИНТЕЗЕ МОНОНУКЛЕОТИДОВ

    Аспарагин . Является донором амидной группы.

    Аспарагиновая кислота .

а) Является донором аминогруппы

    Глицин

а) Является донором активного С 1 .

б) Участвует в синтезе всей молекулой.

    Серин . Является донором активного С 1 .

ПЕРЕНОС ОДНОУГЛЕРОДНЫХ ФРАГМЕНТОВ

В организме человека существуют ферменты, которые могут извлекать из некоторых аминокислот С 1 -группу. Такие ферменты являются сложными белками. В качестве кофермента содержат производное витамина В С – фолиевой кислоты . Фолиевой кислоты много в зеленых листьях, к тому же, этот витамин синтезируется микрофлорой кишечника. В клетках организма фолиевая кислота (ФК) дважды восстанавливается (к ней присоединяется водород) с участием фермента НАДФ . Н 2 -зависимой редуктазы , и превращается в тетрагидрофолиевую кислоту (ТГФК).

Активный С­ 1 извлекается из глицина или серина.

В каталитическом центре фермента, содержащего ТГФК, имеются две –NH-группы, которые участвуют в связывании активного С 1 . Схематически процесс можно представить так:

НАДН 2 , который образуется в обратной реакции, может быть использован для восстановления пирувата в лактат (гликолитическая оксидоредукция). Реакция катализируется ферментом глицинсинтетазой. После этого метилен-ТГФК отделяется от белковой части фермента, и затем возможны два варианта ее превращений:

    Метилен-ТГФК может стать небелковой частью ферментов синтеза мононуклеотидов.

    Метиленовая группировка может видоизменяться до:

Эти группировки связаны только с одним из атомов азота ТГФК, но тоже могут стать субстратами для синтеза мононуклеотидов.

Поэтому любая из группировок, связанная с ТГФК, называется активным С 1 .

Для синтеза любого из нуклеотидов требуется активная форма рибозо-фосфата - фосфорибозилпирофосфат (ФРПФ), образующаяся в следующей реакции:

Фосфорибозилпирофосфаткиназа (ФРПФ-киназа) является ключевым ферментом для синтеза всех мононуклеотидов. Ингибируется этот фермент по принципу отрицательной обратной связи избытком АМФ и ГМФ. При генетическом дефекте ФРПФ-киназы наблюдается потеря чувствительности фермента к действию своих ингибиторов. В результате возрастает продукция пуриновых мононуклеотидов, а, значит, и скорость их разрушения, что приводит к увеличению концентрации мочевой кислоты – наблюдается подагра.

После образования ФРПФ реакции синтеза пуриновых и пиримидиновых мононуклеотидов различны.

ПРИНЦИПИАЛЬНЫЕ РАЗЛИЧИЯ В СИНТЕЗЕ ПУРИНОВЫХ И ПИРИМИДИНОВЫХ МОНОНУКЛЕОТИДОВ:

Особенностью синтеза пуриновых нуклеотидов является то, что циклическая структура пуринового азотистого основания постепенно достраивается на активной форме рибозо-фосфата, как на матрице. При циклизации получается уже готовый пуриновый мононуклеотид.

При синтезе пиримидиновых мононуклеотидов сначала образуется циклическа структура пиримидинового азотистого основания, которая в готовом виде переносится на рибозу – на место пирофосфата.

СИНТЕЗ ПУРИНОВЫХ МОНОНУКЛЕОТИДОВ (АМФ и ГМФ)

Существует 10 общих и 2 специфических стадии. В результате общих реакций образуется пуриновый мононуклеотид, являющийся общим предшественником будущих АМФ и ГМФ – инозинмонофосфат (ИМФ). ИМФ в качестве азотистого основания содердит гипоксантин.

Пуриновое кольцо строится из СО 2 , аспарагиновой кислоты, глутамина, глицина и серина. Эти вещества либо полностью включаются в пуриновую структуру, или передают для ее построения отдельные группировки.

Аспарагиновая кислота отдает аминогруппу и превращается в фумаровую кислоту.

Глицин: 1) полностью включается в структуру пуринового азотистого основания; 2) является источником одноуглеродного радикала.

Серин: тоже является донором одноуглеродного радикала.

ФРПФ + глутамин -------> глутамат + ФФ + фосфорибозиламин

Фермент, который катализирует эту реакцию, называется фосфорибозиламидотрансфераза. Он является ключевым ферментом синтеза всех пуриновых мононуклеотидов. Регулируется по принципу отрицательной обратной связи. Аллостерическими ингибиторами этого фермента являются АМФ и ГМФ.

На второй стадии фосфорибозиламин взаимодействует с глицином.

Третья стадия - включение углеродного атома, донором которого является глицин или серин.

Затем достраивается шестичленный фрагмент пуринового кольца:

4-ая стадия - карбоксилирование с помощью активной формы СО 2 при участии витамина Н - биотина.

5-ая стадия - аминирование с участием аминогруппы из аспартата.

6-ая стадия - аминирование за счет аминогруппы глутамина.

7-ая, заключительная стадия - включение одноуглеродного фрагмента (с участием ТГФК), и образуется готовый ИМФ.

Затем протекают специфические реакции, в результате которых ИМФ превращается либо в АМФ, либо в ГМФ. При таком превращении в молекуле появляется аминогруппа, причем в случае превращения в АМФ - на месте ОН-группы. При образовании АМФ источником азота является аспарагиновая кислота, а для образования ГМФ необходим глутамин.

В некоторых тканях есть альтернативный способ синтеза – реутилизация (повторное использование) пуриновых азотистых оснований, которые образовались при распаде нуклеотидов.

Ферменты, катализирующие реакции реутилизации, наиболее активны в быстроделящихся клетках (эмбриональные ткани, красный костный мозг, раковые клетки), а также в тканях головного мозга. На схеме видно, что фермент гуанингипоксантинФРПФтрансфераза обладает более широкой субстратной специфичностью, чем аденинФРПФтрансфераза – помимо гуанина, может переносить и гипоксантин - образуется ИМФ. У человека встречается генетический дефект этого фермента - “болезнь Леша-Нихана”. Для таких больных характерны выраженные морфологические изменения в головном и костном мозге, умственная и физическая отсталость, агрессия, аутоагрессия. В эксперименте на животных синдром аутоагрессии моделируется путем скармливания им кофеина (пурина) в больших дозах, который ингибирует процесс реутилизации гуанина.

Этот лабораторный показатель – не просто числа в бланке анализа. Повышение уровня содержания мочевой кислоты является одним из главных факторов риска последующего развития подагры, формирования почечных камней, развития почечной недостаточности.

Лечение выше перечисленных болезней достаточно сложное и далеко не всегда успешное. Коррекция образа жизни, рациона, водного режима – все это успешно снижает уровень содержания этого соединения в организме. Именно эти общие моменты действуют значительно эффективнее, чем специфические препараты, назначаемые на более поздних сроках болезни.

Биохимия мочевой кислоты

Мочевая кислота – это конечный продукт обмена пуриновых соединений. Пуриновые основания (аденин и гуанин) являются необходимой составляющей множества компонентов белкового обмена. При распаде этих белковых соединений образуется мочевая кислота. В естественных условиях она выделяется из организма с мочой. Если отмечается избыток этого органического соединения, то в различных участках мочевыделительного тракта формируются различных размеров камни.

Кроме мочевыделительных путей, в процесс вовлекаются крупные и мелкие суставы. Мочевая кислота содержится в тканях организма в виде натриевых солей практически постоянно в предельно допустимой концентрации. Если возникает избыток этого органического соединения (даже незначительный), на поверхности суставных тканей (хрящи, кости, связочный аппарат) легко образуется слой кристаллов мочевой кислоты.

В дальнейшем, если отсутствует необходимое лечение, эти кристаллы трансформируются в тофусы – плотные шипы, которые причиняют сильнейшую боль при малейшем движении.

Уменьшить размеры тофусов и количество крупных камней в мочевыделительном тракте практически невозможно, соответственно, помочь человеку на поздних стадиях заболевания очень тяжело. Определенные препараты могут только незначительно облегчить состояние больного человека. Становится понятным, что наилучший выход из ситуации – снизить уровень содержания мочевой кислоты в тканях человека с помощью коррекции образа жизни.

Физическая активность

Занятия спортом или банальная пробежка в парке не может оказать какого-то определенного влияния на уровень этого соединения в организме. Однако, нарушение пуринового обмена – это один из признаков метаболического синдрома, глубокого нарушения всех видов обмена веществ.

Категорически противопоказано полное голодание! Целенаправленное снижение веса путем уменьшения ежедневных порций, снижения количества калорийных продуктов (фаст-фуд, все сладкие продукты) будет способствовать более сбалансированному обмену веществ.

Сочетание ожирения и подагры взаимно усиливает клинические проявления обоих заболеваний. Необходимо снизить вес, избегая «резких движений» – полностью голодных дней, отсутствия белковых продуктов (тогда начнет разрушаться собственный белок в тканях организма), соковой диеты.

Диетическое питание

Это главная составляющая успешного влияния на уровень мочевой кислоты, а также последующего его сокращения. Рекомендации, касающиеся диетического питания в этой ситуации, достаточно щадящие. Практически подразумевается не героический отказ от ряда продуктов, а уменьшенное содержание потенциально вредных за счет увеличения наиболее полезных составляющих. Обязательный момент – ежедневная значительная водная нагрузка.

Питание должно быть дробным, категорически противопоказано питание обильными порциями 1-2 раза в день. Необходимо привыкнуть к регулярному приему пищи (лучше в определенные часы), между приемами пищи можно перекусывать фруктами или овощами (но не чай со сладостями).

Запрещенные и разрешенные продукты

Как и в любом другом диетическом питании, существует ряд продуктов рекомендованных и нежелательных. Остановимся на них более подробно.

  1. Мясные, рыбные продукты не должны преобладать над другими составляющими, желательно, чтобы их содержание было минимальным, преобладали диетические сорта мяса (телятина, говядина), идеальны 1-2 вегетарианских дня в неделю.
  2. Рекомендуется исключить или значительно уменьшить содержание мясных субпродуктов (печень, почки, мозги), копчений, маринадов, консервов.
  3. Совершенно противопоказаны наваристые бульоны (из любых сортов мяса, особенно из жирных) – в них уровень пуринов наиболее высок.
  4. Животный белок должен быть заменен растительным, например, яйцами и молочными продуктами.
  5. Яйца могут быть использованы в качестве самостоятельного блюда (1-2 в день) или составляющей салатов.
  6. Молочные продукты разрешены любые, но с пониженной жирностью, именно они смещают рН в тканях организма в щелочную сторону и таким образом уменьшают содержание производных мочевой кислоты, они должны присутствовать в рационе практически ежедневно.
  7. Мучные, макаронные изделия, крупы разрешены без ограничений, прекрасно сочетаются с овощными, фруктовыми составляющими (запеканка, каша, суфле).
  8. Фрукты и овощи – это еще одна важная составляющая рациона больного с нарушением пуринового обмена, разрешены любые, в сыром виде, после кулинарной обработки, за исключением щавеля, грибов, бобовых культур.

Напитки, непосредственно выводящие это органическое соединение из тканей, могут быть любыми. Однако, не следует увлекаться крепким чаем, кофе. Преобладать должна обычная питьевая вода, минеральные столовые воды, компот, травяные отвары. Не следует злоупотреблять квасом и любыми спиртными напитками.

Травные сборы

Желательно, чтобы травы и их комбинацию подбирал специалист по фитотерапии. В любом случае травяные сборы, выводящие мочевую кислоту из тканей, требуют длительного (несколько недель) целенаправленного применения.

Наиболее часто травяные сборы включают:

  • листья мяты и крапивы;
  • трава фиалки трехцветной;
  • трава багульника и череды;
  • семена льна;
  • корень одуванчика и лопуха, а также сабельника;
  • цветки пижмы и бессмертника;
  • березовые почки;
  • плоды рябины.

Сочетание трав может быть подобрано индивидуально в зависимости от состояния здоровья и наличия других хронических заболеваний конкретного человека.

Медикаментозное лечение

Любые препараты должны назначаться к применению только доктором. Большинство из них требует лабораторного контроля показателей функции печени и почек, не всегда хорошо переносятся. Доктором могут быть рекомендованы следующие средства.

  1. Аллопуринол – нарушает непосредственный синтез мочевой кислоты, способствует растворению ее соединений в различных человеческих тканях. При длительном применении возможен эффект кумуляции, может вызвать угнетение кровяного ростка. Может быть назначен взрослым и детям.
  2. Лозартан (группа препаратов – антагонистов рецепторов ангиотензина 2-го типа) обладает преимущественно гипотензивным эффектом и умеренным уролитическим. Идеален для пациентов с сочетанием подагры с гипертонической болезнью.
  3. Фенофибрат применяется для коррекции липидного обмена, снижает концентрацию липопротеидов низкой плотности и триглицеридов, опосредованно нормализует пуриновый обмен.
  4. Уратоксидаза и Фебуксостат – препараты нового поколения, которые в настоящее время проходят завершающую стадию клинических испытаний, могут быть рекомендованы тем, кому противопоказан аллопуринол.

Целенаправленное внимание к собственному здоровью поможет вовремя нормализовать пуриновый обмен, предупредить развитие подагры и уратных камней в почках.

Пурины распадаются с образованием мочевой кислоты

Наиболее активно катаболизм пуринов идет в печени, тонком кишечнике (пищевые пурины) и почках.

Реакции катаболизма пуринов

Реакции распада пуринов можно условно разделить на 5 стадий:

1. Дефосфорилирование АМФ и ГМФ – фермент 5′-нуклеотидаза.

2. Гидролитическое отщепление аминогрупы от С 6 в аденозине – фермент дезаминаза. Образуется инозин.

3. Удаление рибозы от инозина (с образованием гипоксантина) и гуанозина (с образованием гуанина) с ее одновременным фосфорилированием – фермент нуклеозидфосфорилаза.

4. Окисление С 2 пуринового кольца: гипоксантин при этом окисляется до ксантина (фермент ксантиноксидаза), гуанин дезаминируется до ксантина – фермент дезаминаза.

5. Окисление С 8 в ксантине с образованием мочевой кислоты – фермент ксантиноксидаза. Около 20% мочевой кислоты удаляется с желчью через кишечник, где она разрушается микрофлорой до CO 2 и воды. Остальная часть удаляется через почки.

Реакции катаболизма пуриновых нуклеотидов

Вы можете спросить или оставить свое мнение.

IV. НАРУШЕНИЯ ОБМЕНА ПУРИНОВЫХ НУКЛЕОТИДОВ

Ураты значительно более растворимы, чем мочевая кислота: так, в моче с рН 5,0, когда

Аллантоин Рис. 10-10. Превращение мочевой кислоты в аллантоин.

мочевая кислота не диссоциирована, ее растворимость в 10 раз меньше, чем в моче с рН 7,0, при котором основная часть мочевой кислоты представлена солями. Реакция мочи зависит от состава пищи, но, как правило, она слабокислая, поэтому большинство камней в мочевыводящей системе - кристаллы мочевой кислоты.

А. Гиперурикемия подагры

Когда в плазме крови концентрация мочевой кислоты превышает норму, то возникает гиперурикемия. Вследствие гиперурикемии может развиться подагра - заболевание, при котором кристаллы мочевой кислоты и уратов откладываются в суставных хрящах, синовиальной оболочке, подкожной клетчатке с образованием подагрических узлов, или тофусов. К характерным признакам подагры относят повторяющиеся приступы острого воспаления суставов (чаще всего мелких) - так называемого острого подагрического артрита. Заболевание может прогрессировать в хронический подагрический артрит.

Поскольку лейкоциты фагоцитируют кристаллы уратов, то причиной воспаления является разрушение лизосомальных мембран лейкоцитов кристаллами мочевой кислоты. Освободившиеся лизосомальные ферменты выходят в иитозоль и разрушают клетки, а продукты клеточного катаболизма вызывают воспаление.

Общий фонд сывороточных уратов в норме составляет

1,2 г у мужчин и 0,6 г у женщин. При подагре без образования тофусов (т.е. подагрических узлов, в которых накапливаются ураты натрия и мочевая кислота) количество уратов возрастает до 2-4 г, а у пациентов с тяжёлой формой болезни, сопровождающейся ростом тофусов, может достигать 30 г.

Подагра - распространённое заболевание, в разных странах ею страдают от 0,3 до 1,7% населения. А поскольку сывороточный фонд уратов у мужчин в 2 раза больше, чем у женщин, то они и болеют в 20 раз чаще, чем женщины.

Как правило, подагра генетически детерминирована и носит семейный характер. Она вызвана нарушениями в работе ФРДФ синтетазы или ферментов "запасного" пути: гипоксантин-гуанин- или аденинфосфорибозилтрансфераз.

К другим характерным проявлениям подагры относят нефропатию, при которой наблюдают образование уратных камней в мочевыводящих путях.

Полиморфные варианты ФРДФ синтетазы

Активность ФРДФ синтетазы, катализирующей образование ФРДФ, строго контролируется пуриновыми нуклеотидами. Мутации в гене ФРДФ синтетазы привели к появлению полиморфных вариантов фермента, которые характеризуются аномальным ответом на обычные регуляторные факторы: концентрацию рибозо-5-фосфата и пуриннуклеотидов. Как правило, наблюдается суперактивация фермента. Пуриновые нуклеотиды синтезируются со скоростью, почти независимой от нужд клетки. Это вызывает ингибирование запасных "путей спасения", усиление катаболизма избыточного количества нуклеотидов, повышение продукции мочевой кислоты, гиперурикемию и подагру (табл. 10-1).

Примерно у 40% больных одной из форм гликогеноза - болезнью Гирке (недостаточностью глюкозо-6-фосфатазы) сопутствующей патологией является подагра. Снижение способности печени секретировать глюкозу в кровь увеличивает использование глюкозо-6-фосфата в пентозофосфатном пути. Образуются большие количества рибозо-5-фосфата, которые могут стимулировать избыточный синтез, а следовательно, и катаболизм пуриновых нуклеотидов.

Б. Недостаточность ферментов "запасных путей" синтеза пуриновых нуклеотидов. Синдром Лёша-Нихена

В ряде случаев причиной гаперурикемии, избыточной экскреции пуринов с мочой и подагры являются нарушения в работе ферментов "пути спасения" пуриновых оснований (табл. 10-1). Гипоксантин-гуанин фосфорйбозилтранс-фераза катализирует реакцию превращения гуанина и гапоксантина в соответствующие нукле-отиды (рис. 10-7). Обнаружены полиморфные варианты гипоксантин-гуанинфосфорибозил-трансферазы со сниженной ферментативной активностью, что:

  • уменьшает повторное использование пуриновых оснований, и они превращаются в мочевую кислоту;
  • увеличивает синтез пуриновых нуклеотидов de novo из-за слабого использования ФРДФ в реакциях реутилизации и увеличения его концентрации в клетке. Адениловые и гуаниловые нуклеотиды образуются в количествах, превышающих потребности клеток, а это способствует усилению их катаболизма.

Синдром Лёша-Нихена - тяжёлая форма гиперурикемии, которая наследуется как рецессивный признак, сцепленный с Х-хромосомой, и проявляется только у мальчиков.

Болезнь вызвана полным отсутствием активности гипоксантин-гуанинфоефорибозилтранс-феразы и сопровождается гиперурикемией с содержанием мочевой кислоты от 9 до 12 мг/дл, что превышает растворимость уратов при нормальном рН плазмы. Экскреция мочевой кислоты у больных с синдромом Лёша-Нихена превышает 600 мг/сут и требует для выведения этого количества продукта не менее 2700 мл мочи.

У детей с данной патологией в раннем возрасте появляются тофусы, уратные камни в моче-выводящих путях и серьёзные неврологические отклонения, сопровождающиеся нарушением речи, церебральными параличами, снижением интеллекта, склонностью к нанесению себе увечий (укусы губ, языка, пальцев).

В первые месяцы жизни неврологические расстройства не обнаруживаются, но на пелёнках отмечают розовые и оранжевые пятна, вызванные присутствием в моче кристаллов мочевой кислоты. При отсутствии лечения больные погибают в возрасте до 10 лет из-за нарушения функции почек.

Полная потеря активности аденинфосфорибозилтрансферазы не столь драматична, как отсутствие

Таблица 10-1. Гиперурикемия, вызванная дефектами в работе ферментов обмена пуриннуклеотидов

Устойчивость к ретроингибированию

Снижение К m для рибозо-5-фосфата

гипоксантин-гуанинфосфорибозилгрансферазы, однако и в этом случае нарушение повторного использования аденина вызывает гиперурикемию и почечнокаменную болезнь, при которой наблюдается образование кристаллов 2,8-дигидроксиаденина.

В. Лечение гиперурикемии

Основным препаратом, используемым для лечения гиперурикемии, является аллопуринол - структурный аналог гипоксантина (рис. 10-11).

Рис. 10-11. Строение аллопуринола и гипоксантина.

Аллопуринол оказывает двоякое действие на обмен пуриновых нуклеотидов:

  • ингибирует ксантиноксидазу и останавливает катаболизм пуринов на стадии образования гипоксантина, растворимость которого почти в 10 раз выше, чем мочевой кислоты. Действие препарата на фермент объясняется тем, что сначала он, подобно гипоксанти-ну, окисляется в гидроксипуринол, но при этом остаётся прочно связанным с активным центром фермента, вызывая его инактивацию;
  • с другой стороны, будучи псевдосубстратом, аллопуринол может превращаться в нуклеотид по "запасному" пути и ингибировать ФРДФ синтетазу и амидофосфорибозилтрансферазу, вызывая торможение синтеза пуринов de novo.

При лечении аллопуринолом детей с синдромом Лёша-Нихена удаётся предотвратить развитие патологических изменений в суставах и почках, вызванных гиперпродукцией мочевой кислоты, но препарат не излечивает аномалии в поведении, неврологические и психические расстройства.

Гипоурикемия и возросшая экскреция гипоксантина и ксантина может быть следствием недостаточности ксантиноксидазы, вызванной нарушениями в структуре гена этого фермента, либо результатом повреждения печени.

Образование мочевой кислоты биохимия

III. КАТАБОЛИЗМ ПУРИНОВЫХ НУКЛЕОТИДОВ

У человека основной продукт катаболизма пуриновых нуклеотидов - мочевая кислота. Её образование идёт путём гидролитического отщепления фосфатного остатка от нуклеотидов с помощью нуклеотидаз или фосфатаз, фосфоролиза N-гликозидной связи нуклеозидов пуриннуклеозидфосфорилазой, последующего дезами-нирования и окисления азотистых оснований (рис. 10-9).

От АМФ и аденозина аминогруппа удаляется гидролитически аденозиндезаминазой с образованием ИМФ или инозина. ИМФ и ГМФ превращаются в соответствующие нуклеозиды: инозин и гуанозин под действием 5´-нуклеотидазы. Пуриннуклеозидфосфорилаза катализирует расщепление N-гликозидной связи в инозине и гуанозине с образованием рибозо-1-фосфата и азотистых оснований: гуанина и гипоксантина. Гуанин дезаминируется и превращается в ксантин, а гипоксантин окисляется в ксантин с помощью ксантиноксидазы, которая катализирует и дальнейшее окисление ксантина в мочевую кислоту.

Ксантиноксидаза - аэробная оксидоредуктаза, простетическая группа которой включает ион молибдена, железа (Fe 3+) и FAD. Подобно другим оксидазам, она окисляет пурины молекулярным кислородом с образованием пероксида водорода. В значительных количествах фермент обнаруживается только в печени и кишечнике.

Мочевая кислота удаляется из организма главным образом с мочой и немного через кишечник с фекалиями. У всех млекопитающих, кроме приматов и человека, имеется фермент уриказа, расщепляющий мочевую кислоту с образованием аллантоина, хорошо растворимого в воде (рис. 10-10).

Амфибии, птицы и рептилии, подобно человеку, лишены уриказы и экскретируют мочевую

Рис. 10-9. Катаболизм пуриновых нуклеотидов до мочевой кислоты.

кислоту и гуанин в качестве конечных продуктов обмена.

Мочевая кислота является слабой кислотой. Содержание недиссоциированной формы и солей (уратов) зависит от рН раствора. При физиологических значениях рН у мочевой кислоты может диссоциировать только один протон из трёх (рК = 5,8), поэтому в биологических жидкостях присутствует как недиссоциированная кислота в комплексе с белками, так и её натриевая соль.

В сыворотке крови в норме содержание мочевой кислоты составляет 0,15-0,47 ммоль/л или 3-7 мг/дл. Ежесуточно из организма выводится от 0,4 до 0,6 г мочевой кислоты и уратов.

Мочевая кислота в крови: нормы и отклонения, почему повышается, диета, чтобы понизить

Казалось бы, такое вещество, как мочевая кислота, трудно сочетается с кровью. Вот в моче – другое дело, там ей место быть. Между тем, в организме постоянно идут различные обменные процессы с образованием солей, кислот, щелочей и других химических соединений, которые выводятся мочой и желудочно-кишечным трактом из организма, поступая туда из кровеносного русла.

Мочевая кислота (МК) тоже присутствует в крови, она образуется в небольших количествах из пуриновых оснований. Необходимые организму пуриновые основания, в основном, поступают извне, с пищевыми продуктами, и используются в синтезе нуклеиновых кислот, хотя в некоторых количествах вырабатываются организмом тоже. Что касается мочевой кислоты, то она является конечным продуктом пуринового обмена и сама по себе организму, в общем-то, не нужна. Ее повышенный уровень (гиперурикемия) указывает на нарушение пуринового обмена и может грозить отложением ненужных человеку солей в суставах и других тканях, вызывая не только неприятные ощущения, но и тяжелые болезни.

Норма мочевой кислоты и повышенная концентрация

Норма мочевой кислоты в крови у мужчин не должна превышать 7,0 мг/дл (70,0 мг/л) или находится в пределах 0,24 – 0,50 ммоль/л. У женщин норма несколько ниже – до 5,7 мг/дл (57 мг/л) или 0,16 – 0,44 ммоль/л соответственно.

Образованная в ходе пуринового обмена МК должна раствориться в плазме, чтобы в дальнейшем уйти через почки, однако плазма не может растворить мочевой кислоты более чем 0,42 ммоль/л. С мочой из организма в норме удаляется 2,36 – 5,90 ммоль/сутки (250 – 750 мг/сут).

При своей высокой концентрации мочевая кислота образует соль (урат натрия), которая откладывается в тофусы (своеобразные узелки) в различных видах тканей, обладающих сродством к МК. Чаще всего тофусы можно наблюдать на ушных раковинах, кистях рук, стопах, но излюбленным местом являются поверхности суставов (локоть, голеностоп) и сухожильные влагалища. В редких случаях они способны сливаться и образовывать язвы, из которых в виде белой сухой массы выходят кристаллы уратов. Иногда ураты обнаруживаются в синовиальных сумках, вызывая воспаление, боль, ограничение подвижности (синовит). Соли мочевой кислоты можно найти в костях с развитием деструктивных изменений костных тканей.

Уровень мочевой кислоты в крови зависит от ее продукции в ходе пуринового обмена, клубочковой фильтрации и реабсорбции, а также канальцевой секреции. Чаще всего повышенная концентрация МК является следствием неправильного питания, особенно, это касается людей, имеющих наследственную патологию (аутосомно-доминантные или связанные с Х-хромосомой ферментопатии), при которой увеличивается выработка мочевой кислоты в организме или замедляется ее выведение. Генетически обусловленная гиперурикемия называется первичной , вторичная вытекает из ряда других патологических состояний или формируется под воздействием образа жизни.

Таким образом, можно сделать вывод, что причинами повышения мочевой кислоты в крови (излишняя продукция или замедленное выведение) являются:

  • Генетический фактор;
  • Неправильное питание;
  • Почечная недостаточность (нарушение клубочковой фильтрации, уменьшение канальцевой секреции – МК из кровяного русла не переходит в мочу);
  • Ускоренный обмен нуклеотидов (миелома, лимфо- и миелопролиферативные болезни, гемолитическая анемия).
  • Применение салициловых препаратов и мочегонных средств.

Главные причины повышения…

Одной из причин повышения мочевой кислоты в крови медицина называет неправильное питание, а именно, потребление неразумного количества продуктов, аккумулирующих пуриновые вещества. Это – копчености (рыба и мясо), консервы (особенно - шпроты), печень говяжья и свиная, почки, жареные мясные блюда, грибочки и другие всякие вкусности. Большая любовь к этим продуктам приводит к тому, что нужные организму пуриновые основания усваиваются, а конечный продукт – мочевая кислота, оказывается лишней.

Следует отметить, что продукты животного происхождения, играющие не последнюю роль в возрастании концентрации мочевой кислоты, поскольку несут пуриновые основания, как правило, содержат большое количество холестерина . Увлекаясь такими любимыми блюдами, не соблюдая меры, человек может наносить двойной удар по своему организму .

Диета, обедненная пуринами, состоит из молочных продуктов, груш и яблок, огурцов (не маринованных, конечно), ягод, картофеля и других овощей в свежем виде. Консервация, жарка или всякое «колдовство» над полуфабрикатами заметно ухудшают качество пищи в этом плане (содержание пуринов в еде и накопление мочевой кислоты в организме).

…И главные проявления

Лишняя мочевая кислота разносится по организму, где выражение ее поведения может иметь несколько вариантов:

  1. Кристаллы уратов откладываются и образуют микротофусы в хрящевых, костных и соединительных тканях, вызывая подагрические заболевания. Накопленные в хряще ураты, нередко освобождаются из тофусов. Обычно этому предшествует воздействие провоцирующих гиперурикемию факторов, например, новое поступление пуринов и, соответственно, мочевой кислоты. Кристаллы солей захватываются лейкоцитами (фагоцитоз) и обнаруживаются в синовиальной жидкости суставов (синовит). Это – острый приступ подагрического артрита .
  2. Ураты, попадая в почки, могут откладываться в интерстициальной почечной ткани и приводить к формированию подагрической нефропатии, а следом - и почечной недостаточности. Первыми симптомами болезни можно считать перманентно низкий удельный вес мочи с появлением в ней белка и повышение артериального давления (артериальная гипертензия), в дальнейшем происходят изменения органов выделительной системы, развивается пиелонефрит. Завершением процесса считают формирование почечной недостаточности .
  3. Повышенное содержание мочевой кислоты, образование солей (ураты и кальциевые конкременты) при ее задержке в почках + повышенная кислотность мочи в большинстве случаев приводит к развитию почечнокаменной болезни.

варианты поражения мочевой кислотой почек и суставов

Все движения и превращения мочевой кислоты, обусловливающие ее поведение в целом, могут быть взаимосвязаны или существовать изолированно (как у кого пойдет).

Мочевая кислота и подагра

Рассуждая о пуринах, мочевой кислоте, диете, никак не получается обойти вниманием такую неприятную болезнь, как подагра . В большинстве случаев ее связывают с МК, к тому же редкой ее назвать трудно.

Подагра преимущественно развивается у лиц мужского пола зрелого возраста, иной раз имеет семейный характер. Повышенный уровень мочевой кислоты (гиперурикемия) в биохимическом анализе крови наблюдается задолго до появления симптомов заболевания.

Первый приступ подагры тоже яркостью клинической картины не отличается, всего-то – заболел большой палец какой-нибудь ноги, а дней через пять человек опять чувствует себя вполне здоровым и забывает об этом досадном недоразумении. Следующая атака может проявиться через большой промежуток времени и протекает более выраженно:

  • Боль в мелких и крупных суставах (пальцы ног и рук, голеностопы, колени);
  • Повышение температуры тела;
  • Увеличение количества лейкоцитов в общем анализе крови, ускорение СОЭ;

суставы, наиболее часто поражаемые подагрой

Лечить болезнь непросто, а иногда и не безобидно для организма в целом. Терапия, направленная на проявление патологических изменений включает:

  1. При остром приступе – колхицин, который снижает интенсивность болей, но склонен накапливаться в белых клетках крови, препятствовать их передвижению и фагоцитозу, а, следовательно, участию в воспалительном процессе. Колхицин угнетает кроветворение;
  2. Нестероидные противовоспалительные препараты – НПВП, обладающие обезболивающим и противовоспалительным эффектом, но негативно влияющие на органы пищеварительного тракта;
  3. Диакарб препятствует камнеобразованию (участвует в их растворении);
  4. Противоподагрические препараты пробенецид и сульфинпиразон способствуют усиленному выведению МК с мочой, но применяются с осторожностью при изменениях в мочевыводящих путях, параллельно назначают большое потребление жидкости, диакарб и отщелачивающие препараты. Аллопуринол снижает продукцию МК, способствует обратному развитию тофусов и исчезновению других симптомов подагры, поэтому, наверное, этот препарат один из лучших средств лечения подагры.

Эффективность лечения пациент может значительно повысить, если возьмется за диету, содержащую минимальное количество пуринов (только для нужд организма, а не для накопления).

Диета при гиперурикемии

Малокалорийная диета (лучше всего подходит стол №5, если у пациента все в порядке с весом), мясо и рыбка – без фанатизма, граммов 300 в недельку и не более. Это поможет больному снизить мочевую кислоту в крови, жить полноценной жизнью, не мучаясь приступами подагрического артрита. Пациентам с признаками этой болезни, имеющим лишний вес, рекомендуется использовать стол №8, не забывая разгружаться каждую неделю, но при этом помнить, что полное голодание запрещено. Отсутствие еды в самом начале диеты быстренько поднимет уровень МК и обострит процесс. А вот о дополнительном поступлении аскорбиновой кислоты и витаминов группы В следует подумать всерьез.

Все дни, пока будет длиться обострение заболевания, должны протекать без употребления мясных и рыбных блюд. Пища должна быть не твердой, впрочем, лучше вообще потреблять ее в жидком виде (молоко, фруктовые кисели и компоты, соки из фруктов и овощей, супы на овощном бульоне, каша-«размазня»). Кроме этого, пациент должен много пить (не меньше 2 литров в сутки).

Следует иметь в виду, что значительное количество пуриновых оснований имеется в таких деликатесах, как:

  1. Мозги, зобная железа;
  2. Печень (прежде всего – говяжья);
  3. Язык и почки (тоже изъятые у крупного рогатого скота);
  4. «Молодое» мясо (телятина, цыпленок);
  5. Жирное мясо (независимо от вида животных);
  6. Копчености любых видов;
  7. Консервы в масле (шпроты, сардины, сельдь);
  8. Крутые наваристые рыбные и мясные бульоны.
  9. Свежие гороховые, чечевичные, фасолевые стручки;
  10. Грибы, особенно, сушеные;
  11. Шпинат, щавель;
  12. Брюссельская капуста;
  13. Кофе и какао.

Напротив, минимальная концентрация пуринов отмечается в:

  1. Всех молочных продуктах, начиная с самого молока;
  2. Яйцах домашней птицы;
  3. Икре (как ни странно);
  4. Картошке, салате, морковке, огурцах;
  5. Хлебных изделиях;
  6. Крупах всех видов;
  7. Любых орехах;
  8. Апельсинах, сливах, абрикосах;
  9. Грушах и яблоках.

Это краткий список продуктов, которые запрещены или разрешены пациентам, обнаружившим первые признаки подагры и повышенную мочевую кислоту в анализе крови. Снизить мочевую кислоту в крови поможет вторая часть списка (молоко, овощи и фрукты).

Мочевая кислота понижена. Что это может значить?

Мочевая кислота в крови понижена, в первую очередь, при использовании противоподагрических средств, что абсолютно естественно, ведь они снижают синтез МК.

Кроме этого, причиной понижения уровня мочевой кислоты может стать уменьшение канальцевой реабсорбции, наследственно обусловленное снижение продукции МК и в редких случаях – гепатиты и анемия.

Между тем, пониженный уровень конечного продукта метаболизма пуринов (ровно, как и повышенный) в моче связан с более широким кругом патологических состояний, однако анализ мочи на содержание МК не такой уж и частый, он обычно интересует узких специалистов, занимающихся какой-то конкретной проблемой. Для самодиагностики пациентам он вряд ли может пригодиться.

В растительном и животном мире широко распространены гидроксипроизводные пурина, важнейшими из которых являются мочевая кислота, ксантин и гипоксантин. Эти соединения образуются в орга­низме при метаболизме нуклеиновых кислот.

Мочевая кислота . Это кристаллическое, плохо растворимое в воде веще­ство содержится в небольшом количестве в тканях и моче млекопитающих. У птиц и рептилий мочевая кислота выступает как вещество, выводящее из организма избыток азота (аналогично мочевине у млекопитающих). Гуано (высохшие экскременты морских птиц) содержит до 25% мочевой кислоты и служит источником ее получения.

Для мочевой кислоты характерна лактам-лактимная таутомерия . В кристаллическом состоянии мочевая кислота находится в лактатной (оксо-) форме, а в растворе между лактамной и лактимной формами устанавливается динамическое равновесие, в котором преобладает лактатная форма.

Мочевая кислота является двухосновной кислотой и образует соли - ураты - соответственно с одним или двумя эквивалентами щелочи (дигидро- и гидроураты).

Дигидроураты щелочных металлов и гидроурат аммония нерастворимы в воде . При некоторых заболеваниях, например при подагре и мочекаменной болезни, нера­створимые ураты наряду с мочевой кислотой откладываются в суставах и мочевыводя­щих путях.

Окисление мочевой кислоты, а также ксантина и его производных лежит в основе качественного метода определения этих соединений, называемого мурексидной пробой (качественная реакция) .

При действии таких окислителей, как азотная кислота, пероксид водорода или бромная вода, размыкается имидазольный цикл и первоначально образуются пиримидиновые производныеаллоксан идиалуровая кислота . Эти соединения превраща­ются далее в своеобразный полуацеталь -аллоксантин , при обработке кото­рого аммиаком получаютсятемно-красные кристаллы мурексида - аммоние­вой соли пурпуровой кислоты (в ее енольной форме).

    Конденсированные гетероциклы: пурин – строение, ароматичность; производные пурина – аденин, гуанин, их таутомерия (вопр. 22).

Аденин и гуанин . Эти два аминопроизводныгх пурина, показанные ниже в виде 9Н-таутомеров, являются компонентами нуклеиновых кислот.

Аденин входит также в состав ряда коферментов и природных антибиоти­ков. Оба соединения встречаются и в свободном виде в растительныгх и животныгх тканях. Гуанин, например, содержится в чешуе рыб (из которой его и выделяют) и придает ей характерный блеск.

Аденин и гуанин обладают слабыми кислотными и слабыми основными свойствами. Оба образуют соли с кислотами и основаниями; пикраты удобны для идентификации и гравиметрического анализа.

Структурные аналоги аденина и гуанина, действующие по принципу анти­метаболитов этих нуклеиновых оснований, известны как ве­щества, подавляющие рост опухолевый клеток. Из десятков соединений, оказав­шихся эффективными в эксперименте на животных, некоторые используются и в отечественной клиническом практике, например меркаптопурин и тиогуанин (2-амино-6-меркаптопурин). Из других лекарственных средств на базе пурина следует упомянуть иммунодепрессант азатиоприн и антигерпесный препарат ацикловир (известный и как зовиракс).

    Нуклеозиды: строение, классификация, номенклатура; отношение к гидролизу.

Важнейшими гетероциклическими основаниями служат производные пи­римидина и пурина, которые в химии нуклеиновых кислот принято называть нуклеиновыми основаниями.

Нуклеиновые основания . Для нуклеиновых оснований приняты сокращенные обозначения, со­ставленные из первых трех букв их латинских названий.

К числу важнейших нуклеиновых оснований относятся гидрокси- и ами­нопроизводные пиримидина - урацил, тимин, цитозин и пурина -аденин и гуанин . Нуклеиновые кислоты различаются входящими в их состав гетероциклическими основаниями. Так, урацил входит только в РНК, а тимин - только в ДНК.

Аро­матичность гетероциклов в структуре нуклеиновых оснований лежит в основе их относительно высокой термодинамической стабильности. В замещенномпиримидиновом цикле в лактамных формах нуклеиновых основа­ний шестиэлектронное π-облако образуется за счет 2 р-электронов двойной связиC=Cи 4 электронов двух неподеленных пар атомов азота. В молекуле цитози­на ароматический секстет возникает при участии 4 электронов двух π-связей (C=CиC=N) и неподеленной пары электронов пиррольного азота. Делокализация π-электронного облака по всему гетероциклу осуществляется с участиемsp 2 -гибридизованного атома углерода карбонильной группы (одного - в цитозине, гуанине и двух - в урациле, тимине). В карбонильной группе вследствие сильной поляризацииπ-связиC=Оp-орбиталь атома углерода становится как бы вакантной и, следовательно, спо­собной принять участие в делокализации неподеленной пары электронов соседнего амидного атома азота. Ниже с помощью резонансных структур урацила показана де­локализацияp-электронов (на примере одного лактамного фрагмента):

Строение нуклеозидов . Нуклеиновые основания образуют сD-рибозой или 2-дезокси-D-рибозойN-гликозиды, которые в химии нуклеиновый кислот называютнуклеозидами и конкретно - рибонуклеозидами или дезоксирибонуклеозидами соответственно.

D-Рибоза и 2-дезокси-D-рибоза в составе природныгх нуклеозидов нахо­дятсяв фуранозной форме , т. е. в виде остатковβ-D-рибофуранозы или 2-дезокси-β-D-рибофуранозы. В формулах нуклеозидов атомы углерода в фуранозных циклах нумеруются цифрой со штрихом.N -Гликозидная связь осуществляется между аномерным атомом С-1" рибозы (или дезоксирибозы) и атомомN-1 пиримидинового илиN-9 пуринового основания.

(! ) Природные нуклеозиды всегда являютсяβ-аномерами .

Построение названия нуклеозидов иллюстрируется следующими приме­рами:

Однако наиболее употребительными являются названия, производимые от тривиального названия соответствующего гетероциклического основания с суффиксом -идин у пиримидиновытх (например, уридин) и -озин у пуриновых (гуанозин) нуклеозидов. Сокращенные названия нуклеозидов представляют со­бой однобуквенный код, где используется начальная буква латинского названия нуклеозида (с добавлением латинской буквыdв случае дезоксинуклеозидов):

Аденин + Рибоза → Аденозин (А)

Аденин + Дезоксирибоза → Дезоксиаденозин (dA)

Цитозин + Рибоза → Цитидин (С)

Цитозин + Дезоксирибоза → Дезоксицитидин (dC)

Исключением из этого правила является название «тимидин » (а не «дезокситимидин»), которое используется для дезоксирибозида тимина, входя­щего в состав ДНК. Если же тимин связан с рибозой, то соответствующий нуклеозид называют риботимидином.

Являясь N-гликозидами, нуклеозиды отно­сительно устойчивых к щелочам , нолегко гидролизуются при нагревании в присутствии кислот . Пиримидиновые нуклеозиды более устойчивы к гидро­лизу, чем пуриновые.

Имеющейся «небольшой» раз­ницы в строении или конфигурации одного атома углерода (например, С-2") в углеводном остатке оказывается достаточным, чтобы вещество играло роль ингибитора биосинтеза ДНК. Этот принцип используется при создании но­вых лекарственных средств методом молекулярной модификации природных моделей.

    Нуклеотиды: строение, номенклатура, отношение к гидролизу.

Нуклеотиды образуются в результате частичного гидролиза нуклеиновых кислот, либо путем синтеза. Они содержатся в значительных количествах во всех клетках. Нуклеотиды являютсяфосфатами нуклеозидов .

В зависимости от природы углеводного остатка различают дезоксирибонуклеотиды ирибонуклеотиды . Фосфорная кислота обычно этерифицирует спиртовый гидроксил приС-5" или приС-З" в остатках дезоксирибозы (дезоксирибонуклеотиды) или рибозы (рибонуклеотиды). В молекуле нуклеотида для связывания трех структурных компонентов используютсясложноэфирная связь иN -гликозидная связь .

Принцип строения мононуклеотидов

Нуклеотиды можно рассматривать как фосфаты нуклеозидов (эфиры фосфорной кислоты) и каккислоты (в связи с наличием протонов в остат­ке фосфорной кислоты). За счет фосфатного остатка нуклеотидыпроявляют свойства двухоснов­ной кислоты и в физиологических условиях при рН ~7 находятся в полностью ионизированном состоянии.

Для нуклеотидов используют два вида названий. Один из них включает наименование нуклеозида с указанием положения в нем фосфатно­го остатка, например аденозин-3"-фосфат, уридин-5"-фосфат. Другой вид на­званий строится путем добавления сочетания -иловая кислота к названию ос­татка нуклеинового основания, например 3"-адениловая кислота, 5"-уридиловая кислота.

В химии нуклеотидов также принято использование сокращенных назва­ний . Свободные мононуклеотиды, т. е. не находящиеся в составе полинуклеотидной цепи, называют как монофосфаты с отражением этого признака в сокращенном коде буквой «М». Например, аденозин-5"-фосфат имеет сокра­щенное название АМР (в отечественной литературе - АМФ, аденозинмоно- фосфат) и т. п.

Для записи последовательности нуклеотидных остатков в составе полинуклеотидных цепей применяется другой вид сокращений с использованием однобуквенного кода для соответствующего нуклеозидного фрагмента. При этом 5"-фосфаты записываются с добавлением латинской буквы «р» перед од­нобуквенным символом нуклеозида, 3"-фосфаты - после однобуквенного символа нуклеозида. Например, аденозин-5"-фосфат - рА, аденозин-3"-фосфат - Ар и т. п..

Нуклеотиды способны гидролизоваться в присутствии сильных неорга­нических кислот (НС1, НВr, Н 2 SО 4) инекоторых органических кислот (СС1 3 СООН, НСООН, СН 3 СООН) поN-гликозидной связи, фосфорноэфир­ная связь проявляет при этом относительную устойчивость. В то же время под действием фермента 5"-нуклеотидазы гидролизуется сложноэфирная связь, аN- гликозидная связь сохраняется.

    Нуклеотидные коферменты: АТФ–строение, отношение к гидролизу.

Нуклеотиды имеют большое значение не только как мономерные едини­цы полинуклеотидных цепей различных видов нуклеиновых кислот. В живых организмах нуклеотиды являются участниками важнейших биохимических процессов. Особенно они важны в роли коферментов , т. е. веществ, тесно свя­занных с ферментами и необходимых для проявления ими ферментативной активности. Во всех тканях организма в свободном состоянии содержатся моно-, ди- и трифосфаты нуклеозидов.

Особенно известны аденинсодержащие нуклеотиды :

Аденозин-5"-фосфат (АМР, или в русской литературе АМФ);

Аденозин-5"-дифосфат (ADP, или АДФ);

Аденозин-5"-трифосфат (АТР, или АТФ).

Нуклеотиды, фосфорилированные в разной степени, способны к взаимо­превращениям путем наращивания или отщепления фосфатных групп. Дифосфатная группа содержит одну, а трифосфатная - две ангидридные связи, обладающие большим запасом энергии и поэтому называемые макроэргическими . При расщеплении макроэргической связи Р-О выделяется -32 кДж/моль. С этим связана важнейшая роль АТФ как «поставщика» энергии во всех живых клетках.

Взаимопревращения фосфатов аденозина.

В приведенной выше схеме взаимопревращений формулы АМФ, АДФ и АТФ со­ответствуют неионизированному состоянию молекул этих соединений. С участием АТФ и АДФ в организме осуществляется важнейший биохи­мический процесс - перенос фосфатных групп.

    Нуклеотидные коферменты: НАД + и НАДФ + – строение, алкилпиридиниевый ион и его взаимодействие с гидрид–ионом как химическая основа окислительного действия, НАД + .

Никотинамидадениндинуклеотиды . К этой группе соединений относят­сяникотинамидадениндинуклеотид (NAD, или НАД) и его фосфат (NADP, или НАДФ). Эти соединения выполняют важную ролькоферментов в реакциях биологического окисления органических субстратов путем их дегидрирования (с участием ферментов дегидрогеназ). Поскольку эти коферменты являются участниками окислительно-восстановительных реакций, то они могут существовать как в окисленной (НАД+, НАДФ+), так и в восстановленной (НАДН, НАДФН) формах.


Структурным фрагментом НАД + и НАДФ + являетсяникотинамидный ос­таток в видепиридиниевого иона . В составе НАДН и НАДФН этот фрагмент превращается в остаток замещенного 1,4-дигидропиридина.

В ходе биологического дегидрирования, являющегося особым случаем окисления, субстрат теряет два атома водорода, т. е. два протона и два элект­рона (2Н+, 2е) или протон и гидрид-ион (Н+ и Н). Кофермент НАД+ рассматривается как акцептор гидрид-иона . В результате восстановления за счет присоединения гидрид-иона пиридиниевое кольцо переходит в 1,4-дигидропиридиновый фрагмент. Данный процесс обратим.

В ходе окисления ароматический пиридиниевый цикл переходит в неарома­тический 1,4-дигидропиридиновый цикл. В связи с потерей ароматичности возраста­ет энергия НАДН по сравнению с НАД+. Увеличение энергетического содержания происходит за счет части энергии, выделяющейся в результате превращения спирта в альдегид. Таким образом, НАДН запасает энергию, которая затем расходуется в дру­гих биохимических процессах, требующих энергетических затрат.

    Нуклеиновые кислоты: РНК и ДНК, первичная структура.

Нуклеиновые кислоты занимают исключительное место в процессах жиз­недеятельности живых организмов. Они осуществляют хранение и передачу генетической информации и являются инструментом, с помощью которого происходит управление биосинтезом белков.

Нуклеиновые кислоты представляют собой высокомолекулярные соеди­нения (биополимеры), построенные из мономерных единиц - нуклеотидов, в связи с чем нуклеиновые кислоты называют также полинуклеотидами.

Структура каждого нуклеотида включает остатки углевода, гетероцикли­ческого основания и фосфорной кислоты. Углеводными компонентами нук­леотидов являются пентозы:D-рибоза и 2-дезокси-D-рибоза.

По этому признаку нуклеиновые кислоты делятся на две группы:

рибонуклеиновые кислоты (РНК), содержащие рибозу;

дезоксирибонуклеиновые кислоты (ДНК), содержащие дезоксирибозу.

Матричные (мРНК);

Рибосомные (рРНК);

Транспортные (тРНК).

Первичная структура нуклеиновых кислот. ДНК и РНК имеют общие черты вструктуре макромолекул :

Каркас их полинуклеотидных цепей состоит из чередующихся пентозных и фосфатных остатков;

Каждая фосфатная группа образует две сложноэфирные связи: с атомом С-З" предыдущего нуклеотидного звена и с атомом С-5" - последующего нуклео­тидного звена;

Нуклеиновые основания образуют с пентозными остатками N-гликозидную связь.

Приведено строение произвольного участка цепи ДНК, вы­бранного в качестве модели с включением в нее четырех основных нуклеино­вых оснований - гуанина (G), цитозина (С), аденина (А), тимина (Т). Принцип построения полинуклеотидной цепи РНК такой же, как и у ДНК, но с двумя отличиями: пентозным остатком в РНК служитD-рибофураноза, а в наборе нуклеиновых оснований используется не тимин (как в ДНК), а урацил.

(!) Один конец полинуклеотидной цепи, на котором находится нуклеотид со свободной 5"-ОН-группой, называется5"-концом . Другой конец цепи, на котором находится нуклеотид со свободной З"-ОН-группой, называетсяЗ"-концом .

Нуклеотидные звенья записываются слева направо, начиная с 5"-концевого нуклеотида. Запись строения цепи РНК осуществляется по таким же прави­лам, при этом буква «d» опускается.

С целью установления нуклеотидного состава нуклеиновых кислот прово­дят их гидролиз с последующей идентификацией полученных продуктов. ДНК и РНК ведут себя по-разному в условиях щелочного и кислотного гид­ролиза. ДНК устойчивы к гидролизу в щелочной среде , в то время какРНК очень быстро гидролизуются до нуклеотидов, которые, в свою очередь, спо­собны отщеплять остаток фосфорной кислоты с образованием нуклеозидов.N -Гликозидные связи устойчивы в щелочной и нейтральной средах . Поэтому для их расщепленияиспользуется кислотный гидролиз . Оптимальные результаты дает ферментативный гидролиз с исполь­зованием нуклеаз, в том числе и фосфодиэстеразы змеиного яда, которые рас­щепляют сложноэфирные связи.

Наряду с нуклеотидным составом важнейшей характеристикой нуклеино­вых кислот являетсянуклеотидная последовательность , т. е. порядок чередова­ния нуклеотидных звеньев. Обе эти характеристики входят в понятие первич­ная структура нуклеиновых кислот.

Первичная структура нуклеиновых кислот определяется последовательно­стью нуклеотидных звеньев, связанных фосфодиэфирными связями в не­прерывную цепь полинуклеотида.

Общий подход к установлению последовательности нуклеотидных звень­ев заключается в использовании блочного метода. Сначала полинуклеотидную цепь направленно расщепляют с помощью ферментов и химических ре­агентов на более мелкие фрагменты (олигонуклеотиды), которые расшифро­вывают специфическими методами и по полученным данным воспроизводят последовательность строения всей полинуклеотидной цепи.

Знание первичной структуры нуклеиновых кислот необходимо для выяв­ления связи между их строением и биологической функцией, а также для по­нимания механизма их биологического действия.

Комплементарность оснований лежит в основе закономерностей, кото­рым подчиняется нуклеотидный состав ДНК. Эти закономерности сформу­лированыЭ. Чаргаффом :

Количество пуриновых оснований равно количеству пиримидиновых оснований;

Количество аденина равно количеству тимина, а количество гуанина равно количеству цитозина;

Количество оснований, содержащих аминогруппу в положениях 4 пири­мидинового и 6 пуринового ядер, равно количеству оснований, содержащих в этих же положениях оксогруппу. Это означает, что сумма аденина и цитозина равна сумме гуанина и тимина.

Для РНК эти правила либо не выполняются, либо выполняются с некото­рым приближением, поскольку в РНК содержится много минорных оснований.

Комплементарность цепей составляет химическую основу важнейшей функции ДНК - хранения и передачи наследственных признаков. Сохран­ность нуклеотидной последовательности является залогом безошибочной пе­редачи генетической информации. Изменение последовательности основа­ний в любой цепи ДНК приводит к устойчивым наследственным изменени­ям, а следовательно, и к изменениям в строении кодируемого белка. Такие изменения называют мутациями . Мутации могут происходить в результате за­мены какой-либо комплементарной пары оснований на другую. Причиной такой замены может служить сдвиг таутомерного равновесия.

Например, в случае гуанина сдвиг равновесия в сторону лактимной формы обусловлива­ет возможность образования водородных связей с необычным для гуанина ос­нованием - тимином и возникновение новой пары гуанин-тимин вместо традиционной пары гуанин-цитозин.

Замена «нормальных» пар оснований передается затем при «переписыва­нии» (транскрипции) генетического кода с ДНК на РНК и приводит в итоге к изменению аминокислотной последовательности в синтезируемом белке.

    Алкалоиды: химическая классификация; основные свойства, образование солей. Представители: хинин, никотин, атропин.

Алкалоиды представляют собой большую группу природных азотсодержа­щих соединений преимущественно растительного происхождения. Природные алкалоиды служат моделями для создания новых лекарственных препаратов, часто более эффективных и в то же время более простых по структуре.

В настоящее время в зависимости от происхождения атома азота в структуре молекулы, среди алкалоидов выделяют:

    Истинные алкалоиды – соединения, которые образуются из аминокислот и содержат атом азота в составе гетероцикла (гиосциамин, кофеин, платифиллин).

    Протоалкалоиды соединения, которые образуются из аминокислот и содержат алифатический атом азота в боковой цепи (эфедрин, капсаицин).

    Псевдоалкалоиды – азотсодержащие соединения терпеновой и стероидной природы (соласодин).

В классификации алкалоидов существует два подхода.Химическая клас­сификация основана на строении углеродно-азотного скелета:

    Производные пиридина и пиперидина (анабазин, никотин).

    С конденсированными пирролидиновыми и пиперидиновыми кольцами (производные тропана) - атропин, кокаин, гиосциамин, скополамин.

    Производные хинолина (хинин).

    Производные изохинолина (морфин, кодеин, папаверин).

    Производные индола (стрихнин, бруцин, резерпин).

    Производные пурина (кофеин, теобромин, теофилин).

    Производные имидазола (пилокарпин)

    Стероидные алкалоиды (соласонин).

    Ациклические алкалоиды и алкалоиды с экзоциклическим атомом азота (эфедрин, сферофизин, колхамин).

В основу другого вида классификации алкалоидов положен ботанический признак, согласно которому алкалоиды объединяют по растительным источ­никам.

Большинство алкалоидов обладает основными свойствами , с чем связано их название. В растениях алкалоиды содержатся в виде солей с органическими кис­лотами (лимонной, яблочной, винной, щавелевой).

Выделение из растительного сырья:

1-ый способ (экстракция в виде солей):

2-ой способ (экстракция в виде оснований):

Основные (щелочные) свойства алкалоидов выражены в различной степени. В природе чаще встречаются алкалоиды, которые относятся к третичным, реже - к вторичным либо к четвертичным аммонийным основаниям.

Благодаря основному характеру алкалоиды образуют соли с кислотами разной степени прочности. Соли алкалоидов легко разлагаются под действием едких щелочей и аммиака . При этом выделяются свободные основания.

Благодаря основному характеру, алкалоиды при взаимодействии с кислотами образуют соли . Это свойство используется при выделении и очистке алкалоидов, их количественном определении и получении препаратов.

Алкалоиды-соли хорошорастворимы в воде и этаноле (особенно в разбавленном) при нагревании,плохо или совсем не растворимы в органических растворителях (хлороформ, этиловый эфир и др.). В качествеисключения можно назвать скополамина гидробромид, гидрохлориды кокаина и некоторых опийных алкалоидов.

Алкалоиды-основания обычноне растворяются в воде , но легко растворяются в органических растворителях.Исключение составляют никотин, эфедрин, анабазин, кофеин, которые хорошо растворяются как в воде, так и в органических растворителях.

Представители.

Хинин - алкалоид, выделенный из коры хинного дерева (Cinchona oficinalis ) - представляет собой бесцветные кристаллы очень горького вкуса. Хинин и его производные обладают жаропонижающим и антималярийным действием

Никотин - основной алкалоид табака и махорки. Никотин весьма ядовит, смертельная доза для человека составляет 40 мг/кг, причем при­родный левовращающий никотин в 2-3 раза токсичнее синтетического пра­вовращающего.

Атропин - рацемическая форма гиосциамина, обладает холиноблокирующим действием (спазмолитическим и мидриатическим).

    Алкалоиды: метилированные ксантины (кофеин, теофиллин, теобромин); кислотно-основные свойства; их качественные реакции.

Пуриновые алкалоиды следует рассматривать как N -метилированные ксантины – в основе ядро ксантина (2,6-дигидроксопурин). Наиболее известными представителями этой группы являютсякофеин (1,3,7-триметилксантин),теобромин (3,7-диметилксантин) итеофиллин (1,3-диметилксантин), которые содержатся в зернах кофе и чае, шелухе какао-бо­бов, в орехах кола. Кофе­ин, теобромин и теофиллин широко применяются в медицине. Кофеин ис­пользуется преимущественно как психостимулятор, теобромин и теофиллин - как сердечно-сосудистые средства.

Мочевая кислота имеет вид бесцветных кристаллов. Она практически не растволяется в эфире и воде. Впервые данное вещество было открыто Карлом Шееле еще в далеком 1775 году. Он смог отыскать его в камнях, поэтому вещество получила наименование «каменная кислота». Конечное название было дано французом Антуаном Фукура, так как он нашел данный компонент в моче. Элементарный состав был описан ученым Либихом.

Получение Мочевой кислоты

Впервые синтез был произведен Горабачевским в 1882 году. Тогда он нагрел мочевину с гликоколой до температуры в +230 градусов. Естественно, данной процедурой сегодня уже никто не пользуется. Во-первых, она отличается своей трудоемкостью. Во-вторых, удается синтезировать ничтожно малую часть продукта. Добыть искомую кислоту можно при синтезе мочевины с трихлормолочной, а также хлоруксусной. Наиболее подходящий принцип получения был разработан Роозеном и Берендом. Он заключается в конденсировании мочевины с изодиалуровой кислотой.

Используется процесс добычи из гуано. Здесь около четверти от всего состава — мочевая кислота. Для добычи сам состав необходимо прогреть с серной кислотой, а после растворить в большом объеме воды. Далее все отфильтровывается, растворяется в едком калии. Осадка происходит при помощи соляной кислоты. Также сегодня активно применяется способ конденсации мочевины с использованием цианоускусного эфира. Но и здесь также потребуется дополнительная обработка для того, чтобы получить чистый продукт. Сегодня технологии достаточно хорошо отлажены, позволяют добывать мочевую кислоту в необходимых количествах.

Какие функции она выполняет?

Это мощнейший стимулятор ЦНС, который ингибирует фосфодиэстеразу. Он необходим для того, чтобы наладить воздействие между норадреналином и адреналином. Также молочная кислота нудна для того, чтобы увеличить продолжительность действия данных гормонов. Вещество хорошо взаимодействует со свободными радикалами, служит в качестве антиоксиданта.

Количество мочевой кислоты в организме человека контролируется на уровне генетики. Если у человека в организме ее много, то он отличается отличным тонусом, высокой активностью.

При этом, чрезмерное повышенное содержание данного вещества в крови опасно. Сама кислота и, в особенности, ее соли практически не растворяются в воде. Даже при несущественном повышении объема они выпадают в осадок, происходит процесс кристаллизации, как следствие, происходит образование камней. Кристаллы организм воспринимает в качестве чужеродных компонентов. В суставной ткани они фагоцитируются, что приводит к разрушению клеток и появлению гидролитических ферментах. Данный процесс приводит к воспалению, сопровождающемуся серьезными болями в суставах. Именно так и образуется подагра. Если же дело касается скопления в уретре, то возникает мочекаменная болезнь.

Как можно справиться с двумя перечисленными болезнями?

В первую очередь следует позаботиться о выводе всех неблагоприятных веществ. Отлично справляется с поставленной задачей аллопуринол. Также пациенту назначается специальная диета, в продуктах которой нет нуклеиновых кислот. Отлично помогают и соки лития.

Применение Мочевой кислоты

Сложность заключается в том, что сегодня мочевая кислота содержится в большом количестве продуктов. Список их следует знать, так как переизбыток данного компонента может привести к серьезным болезням суставов и мочевого пузыря. В каких же продуктах мочевой кислоты много? В первую очередь это пшеничных хлеб, йогурты, колбаса, дрожжи. Исследования показывают, что переизбыток вещества имеется в пиве, колбасе, твороге и прочих. Особенно опасной врачи считают сыворотку, это показывают и результаты исследований, которые проводились в последние годы. Это не значит, что от данных продуктов следует полностью отказаться. Нет, но не следует потреблять их сверх нормы. Современная промышленность активно занимается тем, что добывает из молочной кислоты кофеин, который активно используется в чае и прочих бодрящих напитках. Ведь, как известно, данный компонент способствует повышению тонуса.

Нельзя не отметить, что мочевая кислота сегодня не используется в лекарственных препаратах, так как бесконтрольное потребление может привести к подагре. Сегодня на рынке наиболее распространены способствуют выводу данного компонента из организма, в последние пару десятилетий они пользуются повышенной популярностью, так количество заболевших мочекаменной болезнью и подагрой постепенно увеличивается.

Мочевая кислота активно применяется в высших и средних учебных заведениях в качестве реагента. Активно ее закупают исследовательские лаборатории для проведения опытов. Как видите, данный компонент пользуется высокой популярностью, его используют в самых разнообразных сферах. При этом, многие относятся к нему с опаской, постоянно пытаются отыскать список продуктов, в которых он находится. Если не злоупотреблять алкоголем и молочными продуктами, то никаких особых проблем возникать не должно. В любом случае, всем людям в возрасте больше 30 лет следует хотя бы раз в несколько лет проверять уровень молочной кислоты.