Скорость распространения света в разных средах. Чему равна скорость света

Действительно, как? Как измерить самую высокую скорость во Вселенной в наших скромных, Земных условиях? Нам уже не нужно ломать над этим голову – ведь за несколько веков столько людей трудилось над этим вопросом, разрабатывая методы измерения скорости света. Начнем рассказ по порядку.

Скорость света – скорость распространения электромагнитных волн в вакууме. Она обозначается латинской буквой c . Скорость света равняется приблизительно 300 000 000 м/с.

Сначала над вопросом измерения скорости света вообще никто не задумывался. Есть свет – вот и отлично. Затем, в эпоху античности, среди ученых философов господствовало мнение о том, что скорость света бесконечна, то есть мгновенна. Потом было Средневековье с инквизицией, когда главным вопросом мыслящих и прогрессивных людей был вопрос «Как бы не попасть в костер?» И только в эпохи Возрождения и Просвещения мнения ученых расплодились и, конечно же, разделились.


Так, Декарт , Кеплер и Ферма были того же мнения, что и ученые античности. А вот считал, что скорость света конечна, хоть и очень велика. Собственно, он и произвел первое измерение скорости света. Точнее, предпринял первую попытку по ее измерению.

Опыт Галилея

Опыт Галилео Галилея был гениален в своей простоте. Ученый проводил эксперимент по измерению скорости света, вооружившись простыми подручными средствами. На большом и известном расстоянии друг от друга, на разных холмах, Галилей и его помощник стояли с зажженными фонарями. Один из них открывал заслонку на фонаре, а второй должен был проделать то же самое, когда увидит свет первого фонаря. Зная расстояние и время (задержку перед тем, как помощник откроет фонарь) Галилей рассчитывал вычислить скорость света. К сожалению, для того, чтобы этот эксперимент увенчался успехом, Галилею и его помощнику нужно было выбрать холмы, которые находятся на расстоянии в несколько миллионов километров друг от друга. Хотелось бы напомнить, что вы можете , оформив заявку на сайте.


Опыты Рёмера и Брэдли

Первым удачным и на удивление точным опытом по определению скорости света был опыт датского астронома Олафа Рёмера . Рёмер применил астрономический метод измерения скорости света. В 1676 он наблюдал в телескоп за спутником Юпитера Ио, и обнаружил, что время наступления затмения спутника меняется по мере отдаления Земли от Юпитера. Максимальное время запаздывания составило 22 минуты. Посчитав, что Земля удаляется от Юпитера на расстояние диаметра земной орбиты, Рёмер разделил примерное значение диаметра на время запаздывания, и получил значение 214000 километров в секунду. Конечно, такой подсчет был очень груб, расстояния между планетами были известны лишь примерно, но результат оказался относительно недалек от истины.


Опыт Брэдли. В 1728 году Джеймс Брэдли оценил скорость света наблюдая абберацию звезд. Абберация – это изменение видимого положения звезды, вызванное движением земли по орбите. Зная скорость движения Земли и измерив угол абберации, Брэдли получил значение в 301000 километров в секунду.

Опыт Физо

К результату опыта Рёмера и Брэдли тогдашний ученый мир отнесся с недоверием. Тем не менее, результат Брэдли был самым точным на протяжении сотни с лишним лет, аж до 1849 года. В тот год французский ученый Арман Физо измерил скорость света методом вращающегося затвора, без наблюдений за небесными телами, а здесь, на Земле. По сути, это был первый после Галилея лабораторный метод измерения скорости света. Приведем ниже схему его лабораторной установки.


Свет, отражаясь от зеркала, проходил через зубья колеса и отражался от еще одного зеркала, удаленного на 8,6 километров. Скорость колеса увеличивали до того момента, пока свет не становился виден в следующем зазоре. Расчеты Физо дали результат в 313000 километров в секунду. Спустя год подобный эксперимент с вращающимся зеркалом быо проведен Леоном Фуко, получившим результат 298000 километров в секунду.

С появлением мазеров и лазеров у людей появились новые возможности и способы для измерение скорости света, а развитие теории позволило также рассчитывать скорость света косвенно, без проведения прямых измерений.


Самое точное значение скорости света

Человечество накопило огромный опыт по измерению скорости света. На сегодняшний день самым точным значением скорости света принято считать значение 299 792 458 метров в секунду , полученное в 1983 году. Интересно, что дальнейшее, более точное измерение скорости света, оказалось невозможным из-за погрешностей в измерении метра . Сейчас значение метра привязано к скорости света и равняется расстоянию, которое свет проходит за 1 / 299 792 458 секунды.

Напоследок, как всегда, предлагаем посмотреть познавательное видео. Друзья, даже если перед Вами стоит такая задача, как самостоятельное измерение скорости света подручными средствами, Вы можете смело обратиться за помощью к нашим авторам. вы можете оформив заявку на сайте Заочника. Желаем Вам приятной и легкой учебы!

Весной прошлого года научные и научно-популярные журналы мира сообщили сенсационную новость. Американские физики провели уникальный эксперимент: они сумели понизить скорость света до 17 метров в секунду.

Все знают, что свет распространяется с огромной скоростью - почти 300 тысяч километров в секунду. Точное значение ее величины в вакууме = 299792458 м/с - фундаментальная физическая константа. Согласно теории относительности, это максимально возможная скорость передачи сигнала.

В любой прозрачной среде свет распространяется медленнее. Его скорость v зависит от показателя преломления среды n: v = с/n . Показатель преломления воздуха - 1,0003, воды - 1,33, различных сортов стекла - от 1,5 до 1,8. Одно из самых больших значений показателя преломления имеет алмаз - 2,42. Таким образом, скорость света в обычных веществах уменьшится не более чем в 2,5 раза.

В начале 1999 года группа физиков из Роуландовского института научных исследований при Гарвардском университете (штат Массачусетс, США) и из Стэнфордского университета (штат Калифорния) исследовала макроскопический квантовый эффект - так называемую самоиндуцированную прозрачность, пропуская лазерные импульсы через непрозрачную в обычных условиях среду. Этой средой были атомы натрия, находящиеся в особом состоянии, называемом бозе-эйнштейновским конденсатом. При облучении лазерным импульсом он приобретает оптические свойства, которые уменьшают групповую скорость импульса в 20 миллионов раз по сравнению со скоростью в вакууме. Экспериментаторам удалось довести скорость света до 17 м/с!

Прежде чем описывать сущность этого уникального эксперимента, напомним смысл некоторых физических понятий.

Групповая скорость. При распространении света в среде различают две скорости - фазовую и групповую. Фазовая скорость vф характеризует перемещение фазы идеальной монохроматической волны - бесконечной синусоиды строго одной частоты и определяет направление распространения света. Фазовой скорости в среде соответствует фазовый показатель преломления - тот самый, значения которого измеряются для различных веществ. Фазовый показатель преломления, а следовательно, и фазовая скорость зависят от длины волны. Эта зависимость называется дисперсией; она приводит, в частности, к разложению белого света, проходящего через призму, в спектр.

Но реальная световая волна состоит из набора волн различных частот, группирующихся в некотором спектральном интервале. Такой набор называют группой волн, волновым пакетом или световым импульсом. Эти волны распространяются в среде с различными фазовыми скоростями из-за дисперсии. При этом импульс растягивается, а его форма меняется. Поэтому для описания движения импульса, группы волн как целого, вводят понятие групповой скорости. Оно имеет смысл только в случае узкого спектра и в среде со слабой дисперсией, когда различие фазовых скоростей отдельных составляющих невелико. Для лучшего уяснения ситуации можно привести наглядную аналогию.

Представим себе, что на линии старта выстроились семь спортсменов, одетых в разноцветные майки по цветам спектра: красную, оранжевую, желтую и т. д. По сигналу стартового пистолета они одновременно начинают бег, но "красный" спортсмен бежит быстрее, чем "оранжевый", "оранжевый" - быстрее, чем "желтый", и т. д., так что они растягиваются в цепочку, длина которой непрерывно увеличивается. А теперь представим, что мы смотрим на них сверху с такой высоты, что отдельных бегунов не различаем, а видим просто пестрое пятно. Можно ли говорить о скорости движения этого пятна как целого? Можно, но только в том случае, если оно не очень расплывается, когда разница в скоростях разноцветных бегунов невелика. В противном случае пятно может растянуться на всю длину трассы, и вопрос о его скорости потеряет смысл. Это соответствует сильной дисперсии - большому разбросу скоростей. Если бегунов одеть в майки почти одного цвета, различающиеся лишь оттенками (скажем, от темно-красного до светло-красного), это станет соответствовать случаю узкого спектра. Тогда и скорости бегунов будут различаться ненамного, группа при движении останется достаточно компактной и может быть охарактеризована вполне определенной величиной скорости, которая и называется групповой.

Статистика Бозе-Эйнштейна. Это один из видов так называемой квантовой статистики - теории, описывающей состояние систем, содержащих очень большое число частиц, подчиняющихся законам квантовой механики.

Все частицы - как заключенные в атоме, так и свободные - делятся на два класса. Для одного из них справедлив принцип запрета Паули, в соответствии с которым на каждом энергетическом уровне не может находиться более одной частицы. Частицы этого класса называются фермионами (это электроны, протоны и нейтроны; в этот же класс входят частицы, состоящие из нечетного числа фермионов), а закон их распределения называется статистикой Ферми-Дирака. Частицы другого класса называются бозонами и не подчиняются принципу Паули: на одном энергетическом уровне может скапливаться неограниченное число бозонов. В этом случае говорят о статистике Бозе-Эйнштейна. К бозонам относятся фотоны, некоторые короткоживущие элементарные частицы (например, пи-мезоны), а также атомы, состоящие из четного числа фермионов. При очень низких температурах бозоны собираются на самом низком - основном - энергетическом уровне; тогда говорят, что происходит бозе-эйнштейновская конденсация. Атомы конденсата теряют свои индивидуальные свойства, и несколько миллионов их начинают вести себя как одно целое, их волновые функции сливаются, а поведение описывается одним уравнением. Это дает возможность говорить, что атомы конденсата стали когерентными, подобно фотонам в лазерном излучении. Исследователи из американского Национального института стандартов и технологий использовали это свойство конденсата Бозе-Эйнштейна для создания "атомного лазера" (см. "Наука и жизнь" № 10, 1997 г.).

Самоиндуцированная прозрачность. Это один из эффектов нелинейной оптики - оптики мощных световых полей. Он заключается в том, что очень короткий и мощный световой импульс проходит без ослабления через среду, которая поглощает непрерывное излучение или длинные импульсы: непрозрачная среда становится для него прозрачной. Самоиндуцированая прозрачность наблюдается в разреженных газах при длительности импульса порядка 10-7 - 10-8 с и в конденсированных средах - менее 10-11 c. При этом возникает запаздывание импульса - его групповая скорость сильно уменьшается. Впервые этот эффект был продемонстрирован Мак-Коллом и Ханом в 1967 году на рубине при температуре 4 К. В 1970 году в парах рубидия были получены задержки, соответствующие скоростям импульса, на три порядка (в 1000 раз) меньшим скорости света в вакууме.

Обратимся теперь к уникальному эксперименту 1999 года. Его осуществили Лен Вестергард Хэу, Захари Даттон, Сайрус Берузи (Роуландовский институт) и Стив Харрис (Стэнфордский университет). Они охладили плотное, удерживаемое магнитным полем облако атомов натрия до перехода их в основное состояние - на уровень с наименьшей энергией. При этом выделяли только те атомы, у которых магнитный дипольный момент был направлен противоположно направлению магнитного поля. Затем исследователи охладили облако до температуры менее 435 нК (нанокельвинов, т.е. 0,000000435 К, почти до абсолютного нуля).

После этого конденсат осветили "связующим пучком" линейно поляризованного лазерного света с частотой, соответствующей энергии его слабого возбуждения. Атомы перешли на более высокий энергетический уровень и перестали поглощать свет. В результате конденсат стал прозрачным для идущего следом лазерного излучения. И вот здесь появились очень странные и необычные эффекты. Измерения показали, что при определенных условиях импульс, проходящий через бозе-эйнштейновский конденсат, испытывает задержку, соответствующую замедлению света более чем на семь порядков - в 20 миллионов раз. Скорость светового импульса замедлилась до 17 м/с, а его длина уменьшилась в несколько раз - до 43 микрометров.

Исследователи считают, что, избежав лазерного нагрева конденсата, им удастся еще сильнее замедлить свет - возможно, до скорости нескольких сантиметров в секунду.

Система с такими необычными характеристиками позволит исследовать квантово-оптические свойства вещества, а также создавать различные устройства для квантовых компьютеров будущего, скажем, однофотонные переключатели.

В XIX веке произошло несколько научных экспериментов, которые привели к открытию ряда новых явлений. Среди этих явлений – открытие Гансом Эрстедом порождения магнитной индукции электрическим током. Позже Майкл Фарадей обнаружил обратный эффект, который был назван электромагнитной индукцией.

Уравнения Джеймса Максвелла – электромагнитная природа света

В результате этих открытий было отмечено так называемое «взаимодействие на расстоянии», в результате чего новая теория электромагнетизма, сформулированная Вильгельмом Вебером, была основана на дальнодействии. Позже, Максвелл определил понятие электрического и магнитного полей, которые способны порождать друг друга, что и есть электромагнитной волной. Впоследствии Максвелл использовал в своих уравнениях так называемую «электромагнитную постоянную» — с .

К тому времени ученые уже вплотную приблизились к тому факту, что свет имеет электромагнитную природу. Физический же смысл электромагнитной постоянной – скорость распространения электромагнитных возбуждений. На удивление самого Джеймса Максвелла, измеренное значение данной постоянной в экспериментах с единичными зарядами и токами оказалось равным скорости света в вакууме.

До данного открытия человечество разделяло свет, электричество и магнетизм. Обобщение Максвелла позволило по-новому взглянуть на природу света, как на некий фрагмент электрического и магнитного полей, распространяющийся самостоятельно в пространстве.

На рисунке ниже изображена схема распространения электромагнитной волны, которой также является свет. Здесь H – вектор напряженности магнитного поля, E — вектор напряженности электрического поля. Оба вектора перпендикулярны друг другу, а также направлению распространения волны.

Опыт Майкелъсона — абсолютность скорости света

Физика того времени во многом строилась с учетом принципа относительности Галилея, согласно которому законы механики выглядят одинаково в любой выбранной инерциальной системе отсчета. В то же время согласно сложению скоростей – скорость распространения должна была зависеть от скорости движения источника. Однако, в таком случае электромагнитная волна вела бы себя по-разному в зависимости от выбора системы отсчета, что нарушает принцип относительности Галилея. Таким образом, вроде бы отлично сложенная теория Максвелла находилась в шатком состоянии.

Эксперименты показали, что скорость света действительно не зависит от скорости движения источника, а значит требуется теория, которая способна объяснить столь странный факт. Лучшей теорией на то время оказалась теория «эфира» — некой среды, в которой и распространяется свет, подобно тому как распространяется звук в воздухе. Тогда бы скорость света определялась бы не скоростью движения источника, а особенностями самой среды – эфира.

Предпринималось множество экспериментов с целью обнаружения эфира, наиболее известный из которых – опыт американского физика Альберта Майкелъсона. Говоря кратко, известно, что Земля движется в космическом пространстве. Тогда логично предположить, что также она движется и через эфир, так как полная привязанность эфира к Земле – не только высшая степень эгоизма, но и попросту не может быть чем-либо вызвана. Если Земля движется через некую среду, в которой распространяется свет, то логично предположить, что здесь имеет место сложение скоростей. То есть распространение света должно зависеть от направления движения Земли, которая летит через эфир. В результате своих экспериментов Майкелъсон не обнаружил какой-либо разницей между скоростью распространения света в обе стороны от Земли.

Данную проблему попытался решить нидерландский физик Хендрик Лоренц. Согласно его предположению, «эфирный ветер» влиял на тела таким образом, что они сокращали свои размеры в направлении своего движения. Исходя из этого предположения, как Земля, так и прибор Майкелъсона, испытывали это Лоренцево сокращение, вследствие чего Альберт Майкелъсон получил одинаковую скорость для распространения света в обоих направлениях. И хотя Лоренцу несколько удалость оттянуть момент гибели теории эфира, все же ученые чувствовали, что данная теория «притянута за уши». Так эфир должен был обладать рядом «сказочных» свойств, в числе которых невесомость и отсутствие сопротивления движущимся телам.

Конец истории эфира пришел в 1905-м году вместе с публикацией статьи «К электродинамике движущихся тел» тогда еще мало известного – Альберта Эйнштейна.

Специальная теория относительности Альберта Эйнштейна

Двадцатишестилетний Альберт Эйнштейн высказывал совсем новый, иной взгляд на природу пространства и времени, который шел в разрез с тогдашними представлениями, и в особенности грубо нарушал принцип относительности Галилея. Согласно Эйнштейну, опыт Майкельсона не дал положительных результатов по той причине, что пространство и время имеют такие свойства, что скорость света есть абсолютная величина. То есть в какой бы системе отсчета не находился наблюдатель – скорость света относительно него всегда одна 300 000 км/сек. Из этого следовала невозможность применения сложения скоростей по отношению к свету – с какой бы скоростью не двигался источник света, скорость света не будет меняться (складываться или вычитаться).

Эйнштейн использовал Лоренцево сокращение для описания изменения параметров тел, движущихся со скоростями, близкими к скорости света. Так, например, длина таких тел будет сокращаться, а их собственное время – замедляться. Коэффициент таких изменений называется Лоренц-фактор. Известная формула Эйнштейна E= mc 2 на самом деле включает также Лоренц-фактор (E= ymc 2 ), который в общем случае приравнивается к единице, в случае, когда скорость тела v равна нулю. С приближением скорости тела v к скорости света c Лоренц-фактор y устремляется к бесконечности. Из этого следует, что для того, чтобы разогнать тело до скорости света потребуется бесконечное количество энергии, а потому перейти этот предел скорости – невозможно.

В пользу данного утверждения существует также такой аргумент как «относительность одновременности».

Парадокс относительности одновременности СТО

Говоря кратко, явление относительности одновременности состоит в том, что часы, которые располагаются в разных точках пространства, могут идти «одновременно» только если они находятся в одной и той же инерциальной системе отсчета. То есть время на часах зависит от выбора системы отсчета.

Из этого же следует такой парадокс, что событие B, которое является следствием события A, может произойти одновременно с ним. Кроме того, можно выбрать системы отсчета таким образом, что событие B произойдет раньше, чем вызвавшее его событие A. Подобное явление нарушает принцип причинности, который довольно прочно укрепился в науке и ни разу не ставился под сомнение. Однако, данная гипотетическая ситуация наблюдается лишь в том случае, когда расстояние между событиями A и B больше, чем временной промежуток между ними, умноженный на «электромагнитную постоянную» — с . Таким образом, постоянная c , которой равна скорость света, является максимальной скоростью передачи информации. В противном бы случае нарушался бы принцип причинности.

Как измеряют скорость света?

Наблюдения Олаф Рёмера

Ученые античности в своем большинстве полагали, что свет движется с бесконечной скоростью, и первая оценка скорости света была получена аж в 1676-м году. Датский астроном Олаф Рёмер наблюдал за Юпитером и его спутниками. В момент, когда Земля и Юпитер оказались с противоположных сторон Солнца, затмение спутника Юпитера – Ио запаздывало на 22 минуты, по сравнению с рассчитанным временем. Единственное решение, которое нашел Олаф Рёмер – скорость света предельна. По этой причине информация о наблюдаемом событии запаздывает на 22 минуты, так как на прохождение расстояния от спутника Ио до телескопа астронома требуется некоторое время. Согласно подсчетам Рёмера скорость света составила 220 000 км/с.

Наблюдения Джеймса Брэдли

В 1727-м году английский астроном Джеймс Брэдли открыл явление аберрации света. Суть данного явления состоит в том, что при движении Земли вокруг Солнца, а также во время собственного вращения Земли наблюдается смещение звезд в ночном небе. Так как наблюдатель землянин и сама Земля постоянно меняют свое направление движения относительно наблюдаемой звезды, свет, излучаемый звездой, проходит различное расстояние и падает под разным углом к наблюдателю с течением времени. Ограниченность скорости света приводит к тому, что звезды на небосводе описывают эллипс в течение года. Данный эксперимент позволил Джеймсу Брэдли оценить скорость света — 308 000 км/с.

Опыт Луи Физо

В 1849-м году французским физиком Луи Физо был поставлен лабораторный опыт по измерению скорости света. Физик установил зеркало в Париже на расстоянии 8 633 метров от источника, однако согласно расчетам Рёмера свет пройдет данное расстояние за стотысячные доли секунды. Подобная точность часов тогда была недостижима. Тогда Физо использовал зубчатое колесо, которое вращалось на пути от источника к зеркалу и от зеркала к наблюдателю, зубцы которого периодически закрывали свет. В случае, когда световой луч от источника к зеркалу проходил между зубцами, а на обратном пути попадал в зубец – физик увеличивал скорость вращения колеса вдвое. С увеличением скорости вращения колеса свет практически перестал пропадать, пока скорость вращения не дошла до 12,67 оборотов в секунду. В этот момент свет снова исчез.

Подобное наблюдение означало, что свет постоянно «натыкался» на зубцы и не успевал «проскочить» между ними. Зная скорость вращения колеса, количество зубцов и удвоенное расстояние от источника к зеркалу, Физо высчитал скорость света, которая оказалась равной 315 000 км/сек.

Спустя год другой французский физик Леон Фуко провел похожий эксперимент, в котором вместо зубчатого колеса использовал вращающееся зеркало. Полученное ним значение скорости света в воздухе равнялось 298 000 км/с.

Спустя столетие метод Физо был усовершенствован настолько, что аналогичный эксперимент, поставленный в 1950-м году Э. Бергштрандом дал значение скорости равное 299 793,1 км/с. Данное число всего на 1 км/с расходится с нынешним значением скорости света.

Дальнейшие измерения

С возникновением лазеров и повышением точности измерительных приборов удалось снизить погрешность измерения вплоть до 1 м/с. Так в 1972-м году американские ученые использовали лазер для своих опытов. Измерив частоту и длину волны лазерного луча, им удалось получить значение – 299 792 458 м/с. Примечательно, что дальнейшее увеличение точности измерения скорости света в вакууме было нереализуемо в не в силу технического несовершенства инструментов, а из-за погрешности самого эталона метра. По этой причине в 1983-м году XVII Генеральная конференция по мерам и весам определила метр как расстояние, которое преодолевает свет в вакууме за время, равное 1 / 299 792 458 секунды.

Подведем итоги

Итак, из всего вышесказанного следует, что скорость света в вакууме – фундаментальная физическая постоянная, которая фигурирует во многих фундаментальных теориях. Данная скорость абсолютна, то есть не зависит от выбора системы отсчета, а также равна предельной скорости передачи информации. С данной скоростью движутся не только электромагнитные волны (свет), но также и все безмассовые частицы. В том числе, предположительно, гравитон – частица гравитационных волн. Помимо всего прочего, в силу релятивистских эффектов собственное время для света буквально стоит.

Подобные свойства света, в особенности неприменимость к нему принципа сложения скоростей, не укладываются в голове. Однако, множество экспериментов подтверждают перечисленные выше свойства, и ряд фундаментальных теорий строятся именно на таковой природе света.

Свет – одно из ключевых понятий оптической физики. Свет представляет собой электромагнитное излучение, доступное человеческому глазу.

Долгие десятилетия лучшие умы бились над проблемой определения, с какой скоростью движется свет и чему она равна, а также всех сопутствующих ему расчетов. В 1676 в кругу физиков произошла революция. Датский астроном, по имени Оле Ремер, опроверг утверждение, что свет распространяется по вселенной с неограниченной скоростью.

В 1676 году Оле Ремер определил, что скорость света в вакууме составляет 299792458 м/с .

Для удобства эту цифру принялись округлять. Номиналом, равным 300000 м/c, пользуются до сих пор.

Данное правило в обычных для нас условиях касается всех объектов без исключения, в том числе рентгеновских лучей, световых и гравитационных волн осязаемого для наших глаз спектра.

Современные физики, изучающие оптику, доказали, что значение скорости света имеет несколько характеристик:

  • постоянство;
  • недостижимость;
  • конечность.

Скорость света в разных средах

Следует помнить, что физическая константа напрямую зависит от окружающей её среды, в особенности от показателя преломления. В связи с этим точная величина способна меняться, ведь она обусловлена частотами.

Формула вычисления скорости света записывается как с = 3 * 10^8 м/с .

эпиграф
Учительница спрашивает: Дети, что быстрее всего на свете?
Танечка говорит: Быстрее всего слово. Только сказал, уже не вернешь.
Ванечка говорит: Нет, быстрее всего свет.
Только нажал на выключатель, а в комнате тут же светло стало.
А Вовочка возражает: Быстрей всего на свете понос.
Мне однажды так приспичило, что ни слова
сказать не успел, ни свет включить.

Задумывались ли вы когда-нибудь, почему скорость света максимальна, конечна и постоянна в нашей Вселенной? Это весьма интересный вопрос, и сразу, в качестве спойлера, выдам страшную тайну ответа на него - никто точно не знает, почему. Скорость света берется, т.е. мысленно принимается за константу, и на этом постулате, а так же на идее, что все инерциальные системы отсчета равноправны Альберт Эйнштейн построил свою специальную теорию относительности, которая вот уже сто лет выводит ученых из себя, позволяя Эйнштейну безнаказанно показывать миру язык и ухмыляться в гробу над размерами свиньи, которую он подложил всему человечеству.

Но почему, собственно, она такая постоянная, такая максимальная и такая конечная ответа так и нет, это лишь аксиома, т.е. принятое на веру утверждение, подтверждаемое наблюдениями и здравым смыслом, но никак ниоткуда логически или математически не выводимое. И вполне вероятно, что не такое уж и верное, однако никто до сих пор не смог его опровергнуть ни каким опытом.

У меня есть свои соображения на этот счет, о них попозже, а пока по простому, на пальцах™ попытаюсь ответить хотя бы на одну часть - что значит скорость света "постоянна".

Нет, я не буду грузить вас мысленными экспериментами, что будет если в ракете, летящей со скоростью света, включить фары и т.д., сейчас немного не об этом.

Если вы посмотрите в справочнике или википедии, скорость света в вакууме определена как фундаментальная физическая константа, которая точно равна 299 792 458 м/с. Ну, то есть если говорить примерно, то это будет около 300 000 км/с, а вот если прям точно - 299 792 458 метров в секунду.

Казалось бы, откуда такая точность? Любая математическая или физическая константа, что ни возьми, хоть Пи, хоть основание натурального логарифма е , хоть гравитационная постоянная G, или постоянная Планка h , всегда содержат какие-то цифры после запятой . У Пи этих знаков после запятой на сегодняшний момент известно около 5 триллионов (хотя какой-бы то ни было физический смысл, имеют только первые 39 цифр), гравитационная постоянная сегодня определена как G ~ 6,67384(80)x10 -11 , а постоянная Планка h ~ 6.62606957(29)x10 -34 .

Скорость же света в вакууме составляет ровно 299 792 458 м/с, ни сантиметром больше, ни наносекундой меньше. Хотите узнать, откуда такая точность?

Началось все как обычно с древних греков. Науки, как таковой, в современном понимании этого слова, у них не существовало. Философы древней Греции потому и назывались философами, ибо сначала выдумывали какую-то хрень у себя в голове, а потом при помощи логических умозаключений (а иногда и реальных физических опытов) пытались доказать ее или опровергнуть. Однако использование реально существующих физических измерений и феноменов считались у них доказательствами "второго сорта", которые не идут ни в какое сравнение с первосортными логическими выводами получаемыми умозаключениями прямо из головы.

Первым, кто задумался о существовании у света собственной скорости, считают философа Эмпидокла, который заявлял, что свет есть движение, а у движения должна быть скорость. Ему возражал Аристотель, который утверждал, что свет это просто присутствие чего-то в природе, и все. И ничего никуда не движется. Но это еще что! Эвклид с Птолемеем так те вообще считали, что свет излучается из наших глаз, а потом падает на предметы, и поэтому мы их видим. Короче древние греки тупили как могли, покуда их не завоевали такие же древние римляне.

В средние века большинство ученых продолжали считать, что скорость распространения света бесконечна, среди таковых были, скажем, Декарт, Кеплер и Ферма.

Но некоторые, например Галилей, верили, что у света есть скорость, а значит ее можно измерить. Широко известен опыт Галилея, который зажигал лампу и светил помощнику, находящемуся от Галилея в нескольких километрах. Увидев свет, помощник зажигал свою лампу, и Галилей пытался измерить задержку между данными моментами. Естественно у него ничего не получалось, и в конце концов он вынужден был написать в своих сочинениях, что если у света есть скорость, то она чрезвычайно велика и не поддается измерению человеческими усилиями, а посему можно считать ее бесконечной.

Первое документальное измерение скорости света приписывается датскому астроному Олафу Ремеру в 1676м году. К этому году астрономы, вооруженные подзорными трубами того самого Галилея, вовсю наблюдали за спутниками Юпитера и даже вычислили периоды их вращения. Ученые определили, что ближайший к Юпитеру спутник Ио имеет период вращения примерно 42 часа. Однако Ремер заметил, что иногда Ио появляется из-за Юпитера на 11 минут раньше положенного времени, а иногда на 11 минут позже. Как оказалось, Ио появляется раньше в те периоды, когда Земля, вращаясь вокруг Солнца, приближается к Юпитеру на минимальное расстояние, и отстает на 11 минут тогда, когда Земля находится в противоположном месте орбиты, а значит находится от Юпитера дальше.

Тупо поделив диаметр земной орбиты (а он в те времена был уже более-менее известен) на 22 минуты Ремер получил скорость света 220 000 км/с, примерно на треть не досчитавшись до истинного значения.

В 1729м году английский астроном Джеймс Бредли, наблюдая за параллаксом (небольшим отклонением местоположения) звезды Этамин (Гамма Дракона) открыл эффект аберрации света , т.е. изменение положения на небосклоне ближайших к нам звезд из-за движения Земли вокруг Солнца.

Из эффекта аберрации света , обнаруженного Бредли, так же можно вывести, что свет имеет конечную скорость распространения, за что Бредли и ухватился, вычислив ее равной примерно 301 000 км/с, что уже в пределах точности 1% от известной сегодня величины.

Затем последовали все уточняющие измерения другими учеными, но так как считалось, что свет есть волна, а волна не может распространяться сама по себе, нужно чтобы что-то "волновалось", возникла идея существования "светоносного эфира", обнаружение которого с треском провалил американский физик Альберт Майкельсон. Никакого светоносного эфира он не обнаружил, но в 1879м году уточнил скорость света до 299 910±50 км/с.

Примерно в это же время Максвелл публикует свою теорию электромагнетизма, а значит скорость света стало возможно не только непосредственно измерять, но и выводить из значений электрической и магнитной проницаемости, что и было сделано уточнив значение скорости света до 299 788 км/с в 1907м году.

Наконец Эйнштейн заявил, что скорость света в вакууме - константа и не зависит вообще ни от чего. Наоборот, все остальное - сложение скоростей и нахождение правильных систем отсчета, эффекты замедления времени и изменения расстояний при движении с большими скоростями и еще множество других релятивистских эффектов зависят от скорости света (потому что она входит во все формулы в качестве константы). Короче, все в мире относительно, а скорость света и есть та величина, относительно которой относительны все остальные вещи в нашем мире. Тут, возможно, следует отдать пальму первенства Лоренцу, но не будем меркантильны, Эйнштейн так Эйнштейн.

Точное определение значения этой константы продолжалось весь 20й век, с каждым десятилетием ученые находили все больше цифр, после запятой в скорости света, покуда в их головах не начали зарождаться смутные подозрения.

Все более и более точно определяя, сколько метров в вакууме свет проходит за секунду, ученые начали задумываться, а что это мы все в метрах-то меряем? Ведь в конце концов, метр это просто длина какой-то платино-иридиевой палки, которую кто-то забыл в неком музее под Парижем!

А поначалу идея введения стандартного метра казалась великолепной. Чтобы не мучаться с ярдами, футами и прочими косыми саженями, французами в 1791м году было решено принять за стандартную меру длины одну десятимиллионую часть расстояния от Северного Полюса до экватора по меридиану, проходящему через Париж. Измерили это расстояние с точностью, доступной на то время, отлили палку из платино-иридиевого (точнее сначала латунного, потом платиного, а уж потом платино-иридиевого) сплава и положили в эту самую парижскую палату мер и весов, как образец. Чем дальше, тем больше выясняется, что земная поверхность меняется, материки деформируются, меридианы сдвигаются и на одну десятимиллионую часть забили, а стали считать метром именно длину той палку, что лежит в хрустальном гробу парижского "мавзолея".

Такое идолопоклонничество не к лицу настоящему ученому, тут вам не Красная Площадь(!), и в 1960м году было решено упростить понятие метра до вполне очевидного определения - метр точно равен 1 650 763,73 длин волн, испускаемых переходом электронов между энергетическими уровнями 2p10 и 5d5 невозбужденного изотопа элемента Криптон-86 в вакууме. Ну, куда еще яснее?

Так продолжалось 23 года, при этом скорость света в вакууме измерялась со все возрастающей точностью, покуда в 1983м году наконец даже до самых упертых ретроградов дошло, что скорость света и есть самая что ни на есть точная и идеальная константа, а не какой-то там изотоп криптона. И все было решено перевернуть с ног на голову (точнее, если задуматься, решено было все перевернуть как раз таки назад с головы на ноги), теперь скорость света с - истинная константа, а метр это расстояние, которое проходит свет в вакууме за (1 / 299 792 458) секунды.

Реальное значение скорости света продолжает уточняться и в наши дни, но что интересно - с каждым новым опытом ученые не скорость света уточняют, а истинную длину метра. И чем более точно будет найдена скорость света в ближайшие десятилетия, тем более точный метр мы в итоге получим.

А не наоборот.

Ну, а теперь вернемся к нашим баранам. Почему же скорость света в вакууме нашей Вселенной максимальна, конечна и постоянна? Я это понимаю так.

Всем известно, что скорость звука в металле, да и практически в любом твердом теле гораздо выше скорости звука в воздухе. Проверить это очень легко, стоит приложить ухо к рельсе, и можно будет услышать звуки приближающегося поезда гораздо раньше, чем по воздуху. Почему так? Очевидно, что звук по сути, один и тот же, и скорость его распространения зависит от среды, от конфигурации молекул, из которых эта среда состоит, от ее плотности, от параметров ее кристаллической решетки - короче от текущего состояния того медиума, по которому звук передается.

И хотя от идеи светоносного эфира давно уже отказались, вакуум, по которому происходит распространение электромагнитных волн, это не совсем прям абсолютное ничто, каким бы пустым он нам не казался.

Я понимаю, что аналогия несколько притянута за уши, ну так ведь на пальцах™ же! Именно в качестве доступной аналогии, а ни в коей мере не как прямой переход от одного набора физических законов к другим, я лишь прошу представить, что в четырехмерную метрику пространства-времени, которую мы по доброте душевной называем вакуумом, вшита скорость распространения электромагнитных (и вообще любых, включая глюонные и гравитационные) колебаний, как в рельсу "вшита" скорость звука в стали. Отсюда и пляшем.

UPD: Кстати говоря, "читателям со звездочкой" предлагаю пофантазировать, остается ли скорость света постоянной в "непростом вакууме". Например считается, что при энергиях порядка температуры 10 30 К, вакуум прекращает просто кипеть виртуальными частицами, а начинает "выкипать", т.е. ткань пространства разваливается на куски, планковские величины размываются и теряют свой физический смысл и т.д. Будет ли скорость света в подобном вакууме все еще равняться c , или это положит начало новой теории "релятивистского вакуума" с поправками вроде лоренцевских коэффициентов при экстремальных скоростях? Не знаю, не знаю, время покажет...