Способы стимуляции репаративной регенерации костной ткани. Использование резорбируемых мембран

Регенерация костной ткани это биологический процесс обновления костных структур в организме, связанный с постоянным изнашиванием и гибелью клеток в тканях (физиологическая регенерация ) либо с восстановлением целостности кости после повреждений (репаративная регенерация ).

Нормализация целостности ткани происходит при помощи клеточной пролиферации (рост клеток), в первую очередь, остеогенного (внутреннего) слоя надкостницы и эндоста (тонкой соединительнотканной оболочки, выстилающей полость костного мозга).

Различают два вида регенерации: физиологическую и репаративную.

Физиологическая регенерация выражается в постоянной перестройке костной ткани: гибнут, рассасываются старые и формируются новые структуры кости.

Репаративная регенерация происходит при повреждении костной ткани и направлена на восстановление её анатомической целостности и функций.

Физиологическая регенерация

Подготовка места будущей резорбции на поверхности кости;

Миграция остеокластов и их фиксация на костной поверхности;

Растворение костного минерала остеокластами;

Пролиферация, дифференцировка и миграция остеогенных клеток-предшественников;

Синтез органических компонентов межклеточного матрикса и их структурирование.

Репаративная регенерация

  • образование костной ткани на месте повреждения кости, направленное на её полноценное структурно-функциональное восстановление.

Стадия повреждения (первичной деструкции).

Стадия последствий первичной деструкции, вторичная деструкция.

Стадия очищения костной раны, формирование грануляционной ткани.

Стадия образования первичного ретикулофиброзного костного регенерата, восстановление целостности (непрерывности) повреждённой кости.

Репаративное и адаптационное ремоделирование первичного ретикуло-фиброзного костного регенерата.

Выделяют четыре фазы репаративной регенерации.

Первая фаза — катаболизм тканевых структур, пролиферация клеточных элементов

В ответ на травму кости и окружающих её тканей возникает типовой процесс заживления раны, первоначально в виде гидратации, направленный на расплавление и рассасывание погибших клеток. Возникает посттравматический отёк, который усиливается к 3-4-му дню, а затем медленно уменьшается. Включаются механизмы репродукции и пролиферации клеточных элементов. На этом этапе важно образование костной мозоли и нормализация процесса кровообращения в месте повреждений (травмы, переломов и т.д.);

Вторая фаза – образование и дифференцировка тканевых структур

Характеризуется прогрессирующей пролиферацией и дифференцировкой клеточных элементов, вырабатывающих органическую основу костного регенерата. При оптимальных условиях образуется остеоидная ткань, при менее благоприятных — хондроидная, которая впоследствии замещается костной. По мере развития и обызвествления костной ткани происходит резорбция хондроидных и фибробластических структур.

Третья фаза — образование ангиогенной костной структуры (перестройка костной ткани)

Постепенно восстанавливается кровоснабжение регенерата, происходит минерализация его белковой основы. К концу этой стадии из костных балок образуется компактное вещество кости.

Четвёртая фаза — полное восстановление анатомо-физиологического строения кости

Дифференцируются кортикальный слой, надкостница, восстанавливается костномозговой канал, происходит ориентировка костных структур в соответствии с силовыми линиями нагрузки, то есть кость практически принимает свой первоначальный вид.

Виды репаративной регенерации костных тканей

Специалисты условно разделяют регенерацию костной ткани на определенные виды и фазы:

Первичная

Эта фаза требует создания особых условий и развивается за достаточно короткое время и заканчивается образованием интермедиарной мозоли. Первичный вид регенерации встречается чаще всего при компрессионных и забойных повреждениях костей, а также при расстоянии между обломками от 50 до 100 мкм.

Первично-замедленная

Такой вид сращения отмечается в том случае, когда неподвижные обломки плотно прижаты друг к другу, без дополнительного пространства. Первично-замедленное сращение проходит исключительно по сосудистым каналам, что приводит к частичному сращению, в то время как полное межкостное сращивание требует совмещения костных обломков. Многие специалисты считают такой вид репарации достаточно эффективным.

Вторичная

Вторичное сращение аналогично процессу заживления раневой поверхности мягкой ткани, однако между ними существуют отличительные особенности. Заживление ран мягкой ткани обусловлено вторичными натяжениями и, как правило, итогом становится образование рубцов. Репарация клеток при переломе задействует весь костный материал и заканчивается образованием полноценных костей. Однако важно учитывать, что для вторичного срастания кости необходимо обеспечение надежной фиксации отломков. При ее отсутствии или плохо проведенном подготовительном этапе клетками будут пройдены 2 фазы (фибро- и хондрогенез), после чего переломы заживут, но кость может окончательно не срастись.

Регенерация костной ткани может быть физиологической и репаративной. Физиологическая регенерация заключается в перестройке костной ткани, в процессе которой происходит частичное или полное рассасывание костных структур и создание новых. Репаративная (восстановительная) регенерация наблюдается при переломах костей. Этот вид регенерации является истинным, так как образуется нормальная костная ткань.

Восстановление целостности поврежденной кости происходит путем пролиферации клеток камбиального слоя надкостницы (периоста), эндоста, малодифференцированных плюрипотентных клеток стромы костного мозга, а также в результате метаплазии малодифференцированных мезенхимных клеток параоссальных тканей. Последний вид репаративной регенерации костной ткани наиболее активно проявляется за счет мезенхимных клеток адвентиции врастающих кровеносных сосудов. По современным представлениям, остеогенными клетками-предшественниками являются остеобласты, фибробласты, остеоциты, парациты, гистиоциты, лимфоидные, жировые и эндотелиальные клетки, клетки миелоидного и эритроцитарного ряда. В гистологии принято называть костеобразование, возникающее на месте волокнистой соединительной ткани, десмальным; на месте гиалинового хряща — энхондральным; в области скопления пролиферирующих клеток скелетогенной ткани — костеобразованием по мезенхимному типу.

Повреждение костной ткани сопровождается общими и местными изменениями после травмы; посредством нейрогуморальных механизмов в организме включаются адаптационные и компенсаторные системы, направленное на выравнивание гомеостаза и восстановление поврежденной костной ткани. Образующиеся в зоне перелома продукты распада белков и других составных частей клеток являются одним из пусковых механизмов репаративной регенерации. Среди продуктов распада клеток наибольшее значение имеют химические вещества, обеспечивающие биосинтез структурных и пластических белков. В последние годы доказано (А. А. Корж, А. М. Белоус, Е. Я. Панков), что такими индукторами являются вещества нуклеиновой природы (рибонуклеиновая кислота), которые влияют на дифференцировку и биосинтез белков в клетке.

В механизме репаративной регенерации костной ткани выделяют следующие стадии:
1) катаболизм тканевых структур, дедифференцирование и пролиферация клеточных элементов;
2) образование сосудов;
3) образование и дифференцирование тканевых структур;
4) минерализация и перестройка первичного регенерата, а также реституция кости.

В зависимости от точности сопоставления отломков костей, надежного и постоянного их обездвиживания, при сохранении источников регенерации и прочих равных условиях наблюдаются различия в васкуляризации костной ткани. Выделяют (Т. П. Виноградова, Г. Н. Лаврищева, В. И. Стенула, Э. Я. Дубров) 3 вида репаративной регенерации костной ткани: по типу первичного, первично-задержанного и вторичного сращения костных отломков. Сращение костей по первичному типу происходит при наличии небольшого диастаза (50— 100 мкм) и полном обездвиживании сопоставленных отломков костей. Сращение отломков наступает в ранние сроки путем непосредственного формирования костной ткани в интермедиарном пространстве.

В диафизарных отделах костей на раневой поверхности отломков образуется скелетогенная ткань, продуцирующая костные балки, что приводит к возникновению первичного костного сращения при малом объеме регенерата. При этом в регенерате на стыке костных концов не отмечается образования хрящевой и соединительной тканей. Такой вид сращения костей, с образованием минимальной периостальной мозоли, когда соединение отломков происходит непосредственно за счет костных балок, является наиболее совершенным. Этот вид сращения может наблюдаться при переломах без смещения отломков, под надкостничных переломах у детей, применении прочного внутреннего и чрескостного компрессионного остеосинтеза.

Первично-задержанный тип сращения имеет место при отсутствии щели между прочно фиксированными неподвижными костными отломками и характеризуется ранним, но лишь частичным сращением в области сосудистых каналов при внутриканальном остеогенезе. Полному интермедиарному сращению отломков предшествует резорбция их концов.

При вторичном типе сращения, когда вследствие неудовлетворительного сопоставления и фиксации отломков имеются подвижность между ними и травматизация новообразованного регенерата, костная мозоль формируется главным образом со стороны периоста, проходя десмальную и энхондралъную стадии. Периостальная костная мозоль обездвиживает отломки, и только затем происходит сращение непосредственно между ними.

Степень фиксации отломков костей определяется соотношением величины смещающих усилий и усилий, препятствующих этому смещению (В. И. Стецула). Если избранный метод фиксации отломков костей обеспечит полное сопоставление отломков, восстановление продольной оси кости, а также преобладание сил, препятствующих их смещению, фиксация будет надежной. Для сохранения в период формирования сращения постоянной неподвижности на стыке отломков необходимо применять средства фиксации, позволяющие создать значительное превышение величины устойчивости отломков над смещающими усилиями. Запас устойчивости отломков дает возможность рано приступить к активной функции и нагрузке на конечность. Сдавление отломков между собой (компрессия) непосредственно не стимулирует репаративную регенерацию, а усиливает степень обездвиживания, чем способствует более быстрому образованию костной мозоли. В зависимости от степени сдавления отломков, по данным В. И. Стецулы, репаративная регенерация костной ткани протекает различно. Слабая компрессия (45 — 90 Н/см2) не обеспечивает достаточной неподвижности отломков, сращение отломков и сроки его приближаются к вторичному типу. Создание значительной компрессии (250 — 450 Н/см2) приводит к уменьшению щели между отломками и резорбции их концов, к замедлению образования костной мозоли между ними. В этом случае регенерация протекает по типу первичнозадержанного сращения. Наиболее оптимальные условия для репаративной регенерации костной ткани создаются при компрессии средней величины (100 — 200 Н/см2).

Процесс восстановления костей после травмы определяется целым рядом факторов. У детей сращение костей происходит быстрее, чем у взрослых. Имеют значение анатомические условия (наличие надкостницы, характер кровоснабжения), а также тип перелома. Косые и винтообразные переломы срастаются быстрее, чем поперечные. Благоприятные условия для сращения костей создаются при вколоченных и поднадкостничных переломах.

Уровень репаративной регенерации костной ткани во многом определяется степенью травматизации тканей в области перелома: чем больше повреждены источники костеобразования, тем медленнее протекает процесс образования костной мозоли. Учитывая последнее обстоятельство, при лечении переломов следует отдать предпочтение методам, не связанным с нанесением дополнительной травмы в области перелома, а оперативные вмешательства не должны быть травматичными.

В формировании костной мозоли большое значение имеет и соблюдение механических факторов: точного сопоставления, создания контакта и надежного обездвиживания отломков. При остеосинтезе основным условием для сращения костей является неподвижность отломков.

При наружном чрескостном остеосинтезе за счет сдавления и фиксации на протяжении отломков костей спицами, закрепленными в аппарате, на стыке отломков создаются неподвижность и оптимальные условия для формирования первичного костного сращения. На стыке костных отломков формирование сращения начинается с образования эндостального костного сращения, периостальная реакция появляется значительно позже. Точная репозиция и стабильная фиксация отломков аппаратом создают условия к компенсации внутрикостного и местного кровотока, а ранняя нагрузка способствует нормализации трофики. При дистракции вначале возникают условия для формирования костного регенерата между медленно растягиваемыми отломками, а затем формируется костное сращение на стыке регенератов (В. И. Стецула). Установлено, что при дистракции возникает локальный остеопороз, при компрессии этого не наблюдается. Обездвиживание отломков достигается жесткостью аппарата, а также натяжением тканей, связывающих отломки, и мышечных футляров. В этих условиях запас устойчивости отломков возрастает до величин, необходимых для создания постоянной неподвижности и завершения «вторичной» оссификации регенерата.

При дистракции условия формирования между отломками вторичного костного сращения создаются в результате непосредственного обездвиживания костных отломков и «репаративного остеогенеза». В метаэпифизарных отделах костей, имеющих хорошее кровоснабжение, при прочном компрессионном остеосинтезе в короткие сроки происходит сращение по всей площади соприкосновения отломков. При диафизарных переломах репаративная реакция начинается в отдалении от места перелома, а на месте перелома появляется с восстановлением кровоснабжения. Вначале формируется эндостальное, а затем, несколько позже, периостальное сращение. Интермедиарное сращение образуется после восстановления кровоснабжения и расширения сосудистых каналов в концах отломков, в которых формируются новые остеоны (В. И. Стецула). При косых и винтообразных диафизарных переломах с хорошо сопоставленными отломками, когда сохраняется непрерывность костного мозга и внутрикостных сосудов, непосредственно в зоне перелома формируется быстрое костное сращение.

При дистракции оптимальные условия для репаративной регенерации костной ткани создаются в условиях неподвижности отломков и медленной дистракции. При несоблюдении этих условий диастаз заполняется волокнистой соединительной тканью, постепенно превращающейся в фиброзную ткань, а при выраженной подвижности отломков образуется также хрящевая ткань и формируется ложный сустав. При дозированной дистракции и неподвижности отломков диастаз между костными концами заполняется низкодифференцированной скелетогенной тканью, образующейся в условиях пролиферации стромы костного мозга. Новообразование костных балок появляется на обоих отломках, продолжается весь период дистракции на вершинах костной части регенерата, соединенных между собой коллагеновыми волокнами. С увеличением диастаза и созреванием обеих костных частей регенерата процесс новообразования продолжается на границе с соединительнотканной прослойкой путем отложения костного вещества на поверхности пучков коллагеновых волокон (десмальная оссификация).

Увеличение размеров регенерата в процессе его удлинения происходит за счет новообразования коллагеновых волокон в самой соединительнотканной прослойке; соединительнотканная прослойка в дистракционном регенерате выполняет функцию «зоны роста» (В. И. Стецула). После прекращения дистракции, при условии сохранения неподвижности отломков, фиброзная прослойка на стыке костных регенератов подвергается путем десмальной оссификации замещению костной тканью и последующей органной перестройке. В процессе лечения органной перестройке костной ткани и минерализации способствует дозированная нагрузка на конечность. При отсутствии неподвижности отломков процесс оссификации соединительнотканной прослойки резко задерживается и на границе ее с костными частями регенерата формируются замыкающие пластинки. При выраженной неподвижности отломков наступает частичная резорбция концов костных регенератов с замещением фиброзной тканью, может образоваться ложный сустав.

При удлинении различных сегментов конечностей и при разных уровнях остеотомии процесс формирования регенерата и перестройка его протекают однотипно. Однако в зависимости от уровня пересечения кости дистракцию начинают не сразу после операции, а только после соединения костных отломков новообразованной соединительной тканью. При вмешательстве на уровне метафиза ее начинают после операции через 5 — 7 дней, а диафиза — через 10—14 дней.

С помощью аппаратов оказалось возможным постепенное разъединение на уровне зоны роста эпифиза и метафиза костей. Такой способ удлинения трубчатых костей получил название дистракционного эпифизеолиза.

При дистракционном эпифизеолизе формирование регенерата протекает неодинаково. Чем крупнее участок кости, отрывающийся с зоной роста при остеоэпифизеолизе, тем активнее протекает репаративная регенерация костной ткани. Когда с пластинкой роста отрывается небольшое количество костной ткани, диастаз в основном заполняется регенератом, образующимся со стороны метафиза. Формирование костного регенерата на месте удлинения происходит также со стороны надкостницы и эпифиза.

Уровень репаративной регенерации костной ткани во многом зависит от степени травматизации тканей в области перелома: чем больше повреждены источники костеобразования, тем медленнее протекает процесс образования костной мозоли. Поэтому при лечении пострадавших с переломами предпочтительны методы, не связанные с нанесением дополнитель¬ной травмы.

В период формирования костной мозоли важно соблюдать механические факторы: точное сопоставление, создание контакта и надежного обездвиживания отломков.

В современных условиях имеется возможность способствовать улучшению условий репаративной регенерации костной ткани. Для этих целей применяют анаболические стероиды, электромагнитное поле, некоторые препараты.

Анаболические стероиды (ретаболил) влияют на процессы белкового обмена, способствуют синтезу белка, препятствуют развитию в организме посттравматических катаболических процессов и могут положительно влиять на процессы репаративной регенерации костной ткани. Особенно это влияние проявляется, когда репаративные процессы бывают по тем или иным причинам заторможены. Ретаболил вводят внутримышечно по 1 ампуле 3 раза с 10-дневным интервалом.

Электромагнитное поле создают искусственным путем: в одних случаях погружают в костную ткань специальные электроды и подключают к ним внешний источник питания, в других — с помощью магнитов. В последнем случае часть конечности, подлежащую воздействию, помещают в зону электромагнитного поля. Эффект зависит от многих условий: силы электромагнитного поля, частоты и продолжительности действия. Имеет значение и период репаративной регенерации кости. Проблема эта находится в стадии интенсивного научного изучения. Установлено, что в зависимости от создаваемых параметров электромагнитного поля можно улучшать регенерацию костной ткани или тормозить этот процесс.

С.С. Ткаченко

Тема: ОБЩИЕ ВОПРОСЫ ПОВРЕЖДЕНИЙ. ПЕРЕЛОМЫ, ВЫВИХИ.

1. Цели лекции: изучение терминологии, теорий возникновения, классификации, диагностики и принципов лечения переломов, вывихов.

2. Актуальность темы.

Комитет ВОЗ по проблемам современного общества предложил следующую классификацию катастроф: метеорологические - ураганы, смерчи, циклоны (тайфуны), бураны, морозы, необычайная жара, засуха и др.; топологические - наводнения, цунами, снежные обвалы, оползни, сели; теллурические и тектонические - землетрясения, извержения вулканов и др.; аварии - выход из строя технических сооружений (плотин, тоннелей, зданий, шахт), кораблекрушения, крушения поездов, загрязнения воды в системах водоснабжения и водоемах и др. Первые три группы катастроф являются природными (стихийные бедствия), аварии - антропогенными.

В последние годы проблема травматизма становится одной из наиболее актуальных и государственно-важных проблем медицины. В связи с ростом травматизма как техногенного так и природного характера (цунами, землетрясения и др.) проблема своевременного оказания помощи больным с повреждениями опорно-двигательного аппарата становится особо актуальной.

Тема (слайд1) - ПЕРЕЛОМЫ И ВЫВИХИ. Клиника, диагностика, первая медицинская помощь, лечение. Исходы и осложнения переломов.

(слайд2) Переломы - нарушение целостности костной ткани, вызванное механическим воздействием или патологическим процессом.

(слайд3) Классификация переломов:

1. По происхождению: внутриутробные и приобретенные.

Все приобретенные переломы по происхождению делятся на две группы: травматические и патологические.

Травматические переломы возникают в изначально неповрежденной кости, когда сила механического воздействия настолько высока, что превосходит прочность кости.

Патологические переломы происходят при воздействии значительно меньшей силы (иногда при повороте в кровати, опоре на стол и т.д.), что связано с предшествующим поражением кости патологическим процессом (метастазы злокачественной опухоли, туберкулез. Остеомиелит, сифилитическая гумма, снижение прочности кости при гиперпаратиреозе и пр.).



2. По отношению к коже и слизистым: открытые и закрытые.

Особую группу составляют огнестрельные переломы. Их особенностью является массивное повреждение костей и мягких тканей. Часто повреждаются артерии, вены, нервы.

4. По характеру повреждения кости переломы могут быть полными и неполными.

К неполным переломам относятся трещины, поднадкостничный перелом у детей по типу «зеленой веточки», дырчатые, краевые, некоторые огнестрельные.

5. По локализации: эпифизарные, метафизарные и диафизарные. (слайд4)

6. По направлению линии перелома: поперечные, косые, продольные, винтообразные, вколоченные, оскольчатые, компрессионные и отрывные переломы.

7. В зависимости от наличия смещения костных отломков относительно друг от друга переломы бывают без смещения и со смещением.

Смещение костных отломков может быть:

По ширине,

По длине,

Под углом,

Ротационное,

8. По количеству переломы могут быть: одиночные и множественные.

9. По сложности повреждения опорно-двигательного аппарата выделяют простые и сложные.

10. В зависимости от развития осложнений выделяют неосложненные и осложненные переломы.

Возможные осложнения переломов:

Травматический шок,

Повреждения внутренних органов (пневмоторакс при переломе бедра, повреждения мозга при вдавленном переломе черепа и т.д.)

Повреждение сосудов (кровотечение, пульсирующая гематома) и нервов,

Жировая эмболия,

Раневая инфекция, остеомиелит, сепсис.

11. При наличии сочетания переломов с повреждениями другого характера говорят о сочетанной травме или политравме.

Примеры сочетанных повреждений:

Переломы костей голени на обеих конечностях и разрыв селезенки,

Перелом плеча, вывих в тазобедренном суставе и ушиб головного мозга.

РЕГЕНЕРАЦИЯ КОСТНОЙ ТКАНИ

Различают два вида регенерации:

Физиологическая (постоянная перестройка костной ткани: гибнут, рассасываются старые и формируются новые структуры кости),

Репаративная (при повреждении костной ткани и направлена на восстановление ее анатомической целостности и функции).

Источники и фазы репаративной регенерации

1 фаза. Катаболизм тканевых структур, пролиферация клеточных элементов.

2 фаза. Образование и дифференцировка тканевых структур

3 фаза. Образование ангиогенной костной структуры (перестройка костной ткани).

4 фаза. Полное восстановление анатомо-физиологического строения кости.

ВИДЫ КОСТНОЙ МОЗОЛИ.

Периостальная (наружная),

Эндоостальная (внутренняя),

Интермедиаргная,

Пароссальная.

Первые два вида мозоли образуются быстро. Основная их функция - фиксация отломков в месте перелома. Сращение отломков происходит за счет интермедиарной мозоли, после чего пери- и эндостальная мозоли резорбируются. Метаплазия соединительной ткани с трансформацией ее в костную вокруг сломанной кости называется параоссальной мозолью.

ВИДЫ СРАЩЕНИЯ ПЕРЕЛОМОВ.

Первичное сращение (при точном сопоставлении и фиксации отломков репаративная регенерация начинается с образования интермедиарной мозоли, предсавленной костной тканью)

Вторичное сращение (подвижность отломков приводит к травматизации и нарушению микроциркуляции регенерата, который при этом замещается хрящевой тканью, а затем хрящевая ткань замещается костной)

ДИАГНОСТИКА ПЕРЕЛОМОВ

Абсолютные симптомы перелома

Характерная деформация (штыкообразная деформация, изменение оси конечности, ротация в области перелома)

Патологическая подвижность (наличие движений вне зоны сустава)

Костная крепитация (характерный хруст или соответствующие пальпаторные ощущения)

Относительные симптомы перелома

Болевой синдром (локальная болезненность в области перелома, болезненность при нагрузке по оси)

Гематома

Укорочение конечности, вынужденное положение

Нарушение функции (невозможность встать с опорой на конечность, оторвать конечность от поверхности постели, конечность не может удерживать свой вес).

Рентгеновская диагностика

Необходимо проследить непрерывность кортикального слоя, оределить локализацию, линию перелома, наличие и характер смещения отломков.

Лечение.

ПЕРВАЯ ПОМОЩЬ

Остановка кровотечения

Профилактика шока на догоспитальном этапе включает в себя обезболивание наркотичекими анальгетиками и введение кровезаменителей гемодинамического ряда.

Транспортная иммобилизация

Назначение транспортной иммобилизации

Предотвращает дальнейшее смещение костных отломков

Уменьшение болевого синдрома

Создание возможности для транспортировки пострадавшего

Принципы транспортной иммобилизации

Обеспечение неподвижности всей конечности

Быстрота и простота выполнения

Способы транспортной иммобилизации

1. Аутоиммобилизация - бинтование поврежденной нижней конечности пострадавшего к здоровой или верхней конечности к туловищу.

2. Иммобилизация с помощью подручных средств (импровизированными шинами) - использование палок, досок, лыж и т.д.

3. Иммобилизация с помощью стандартных транспорных шин

Основные виды транспортных шин:

Проволочная шина типа Крамера

Шина Еланского

Пневматические шины и шины из пластмассы

Шина Дитерихса

Основные виды транспортировки

При повреждениях позвоночника транспортировка осуществляется на деревянном щите.

При переломе костей таза пострадавшего укладывают в «позу лягушки».

Наложение асептической повязки

Основные принципы лечения переломов

- репозиция костных отломков

Необходимо выполнение следующих правил:

Обезболивание

Сопоставление периферического отломка по отношению к центральному

Рентгенологический контроль после репозиции

Репозиция: открытая и закрытая; одномоментная и постепенная; аппаратная и ручная.

- иммобилизация обеспечение неподвижности отломков относительно друг друга.

Гипсовая техника

Подготовка гипсовых бинтов - раскатывают марлевые бинты, пересыпают их гипсовым порошком и вновь скатывают

Замачивание бинтов - на 1-2 минуты погружают в таз с водой комнатной температуры. Косвенным признаком намокания всего бинта является прекращение выделения пузырьков воздуха.

Подготовка лонгет - влажные бинты раскатывают на столе, поверх первого слоя укладывают второй, третий и т.д. На предплечье - 5-6 слоев, на голень - 8-10 слоев, на бедро - 10-12 слоев гипсового бинта.

Правила наложение повязки:

- конечность по возможности должна находится в физиологически выгодном положении,

Повязка обязательно захватывает один сустав выше и один ниже перелома,

Бинт не перекручивают, а подрезают,

Дистальные участки конечности (кончики пальцев) должны оставаться открытыми.

Сушка происходит в течение 5-10 минут.

Метод скелетного вытяжения- закрытая постепенная репозиция и иммобилизация отломков под действием постоянной тяги за периферический отломок.

Применяется при диафизарных переломах бедра, костей голени, при латеральных переломах шейки бедра, сложных переломах в области голеностопного сустава, переломах плечевой кости, а также в тех случаях, когда при выраженном смещении отломков не удается одномоментная закрытая ручная репозиция.

Выделяютлейкопластырное вытяжение и собственно скелетное .

Принципы:

Через периферический отломок проводится спица Киршнера, к ней фиксируется скоба ЦИТО, за которую осуществляется тяга с помощью груза и системы блоков.

Точки проведения спицы:

На нижней конечности это надмыщелки бедра, бугристость большой берцовой кости и пяточная кость, на верхней - локтевой отросток.

Расчет груза для скелетного вытяжения:

Это 15% или 1\7 массы тела. При переломе бедра обычно 6-12 кг, костей голени - 4-7кг, переломе плеча - 3-5 кг.

Контроль за лечением:

Через 3-4 дня рентгенологическое исследование. Если репозиция не наступила, следует изменить величину груза или направление тяги. Если сопоставление отломков достигнуто, груз уменьшают на 1-2 кг, а к 20 суткам доводят до 50-75% от первоначального.

Достоинства этого метода :

Точность и контролируемость постепенной репозиции. Имеется возможность следить за состоянием конечности, открытой во время всего процесса лечения, а также движений в суставах конечности (резко снижается опасность развития контрактур и тугоподвижности).

Недостатки:

Инвазивность (возможность развития спицевого остеомиелита, отрывных переломов, повреждения нервов и сосудов)

Определенная сложность метода

Необходимость в большей части случаев стационарного лечения и длительного вынужденного положения в постели.

ОПЕРАТИВНОЕ ЛЕЧЕНИЕ

Классический остеосинтез

Внеочаговый компрессионно-дистракционный остеосинтез

Основные виды и принципы остеосинтеза

При расположении конструкций внутри костномозгового канала остеосинтез называют интрамедуллярным , при рапсположении конструкций на поверхности кости - экстрамедуллярный .

Соединение отломков во время оперативного вмешательства металлическими конструкциями создает возможность ранней нагрузки на поврежденную конечность.

Для интрамедуллярного остеосинтеза используют металлические спицы и стержни различных конструкций. Этот вид остеосинтеза обеспечивает наиболее стабильное положение отломков.

Для экстрамедуллярного остеосинтеза применяют проволочные швы, пластинки с болтами. шурупы и другие конструкции.

в последнее время широко стали применяться сплавы никеля и титана. обладающие свойством запоминания первоначальной формы - так называемые металлы с памятью.

Показания к оперативному лечению

Абсолютные:

Открытый перелом,

Повреждение отломками костей магистральных сосудов (нервов) или жизненно важных органов (головной мозг, органы грудной или брюшной полости)

Интерпозиция мягких тканей - наличие между отломками мягких тканей (сухожилие, фасция, мышца)

Ложный сустав - если на отломках кости образовалась замыкательная пластинка, препятсвующая образованию костной мозоли (требуется резекция отломков и остеосинтез)

Неправильно спросшийся перелом с грубым нарушением функции (необходимо интраоперационное разрушение образовавшейся мозоли)

Относительные:

Неудачные попытки закрытой репозиции

Поперечные переломы длинных трубчатых костей (плечаили бедра), когда удержать отломки в мышечном массиве крайне сложно

Переломы шейки бедра, особенно медиальные 9линия перелома проходит медиальнее linea intertrochanterica), при которых нарушается питание головки бедренной кости

Нестабильные компрессионные переломы позвонков (опасность повредления спинного мозга)

Переломы надколенникасос смещением и другие

Для достижения хорошего эстетического результата и долгосрочного успеха при установке внутрикостного имплантата требуется достаточный объем живой костной ткани. Примерно в 50% случаев имплантации, однако, существует потребность в проведении процедур по увеличению объема костной ткани для последующей установки дентального имплантата. Существует несколько способов стимулирования остеогенеза, включающих в себя (1) остеоиндукцию костными трансплантатами или факторами роста; (2) остеокондукцию костными трансплантатами или костнозамещающими материалами, которые служат матрицей для последующего костеобразования; (3) пересадка стволовых клеток или клеток-предшественников, которые дифференцируются в остеобласты; (4) направленная костная регенерация (НКР) с использованием барьерных мембран. Независимо от используемого метода, заживление костной ткани всегда протекает по одному основному механизму.

Кость обладает уникальным потенциалом регенерации, который, вероятно, лучше всего иллюстрируется ее репарацией после перелома. Кость способна к заживлению переломов или локальных дефектов новообразованной тканью и регенерации без потери высокой структурной организации и оставления рубцов. Механизм заживления по такой схеме часто считается кратким повторением остеогенеза и роста костной ткани в период эмбриогенеза. Поскольку кость обладает уникальной способностью к самовосстановлению, вся хитрость реконструктивной хирургии должна состоять в использовании этого громадного регенераторного потенциала в целях усиления процесса остеогенеза в различных клинических ситуациях. Таким образом, адекватная костная аугментация или замещение того или иного костного дефекта требуют от врача глубокого понимания процессов роста и развития костной ткани и ее морфогенеза на клеточном и молекулярном уровнях. Эта статья суммирует информацию о развитии, структуре, функции, биохимии и цитобиологии кости, чтобы обеспечить клиницистам биологическую основу для понимания схемы ее заживления при НКР.

Развитие и структура костной ткани

Функции костной ткани

Костная ткань – это, конечно, высокое достижение в эволюции опорных тканей организма. Однако у нее есть и другие функции, выходящие за пределы просто опорно-поддерживающего аппарата тела. Функции кости включают (1) механическую опору тела, его движения и передвижение; (2) поддержку зубов при откусывании и пережевывании пищи; (3) поддержку и защиту мозга, спинного мозга и внутренних органов; (4) вместилище для костного мозга, который в свою очередь является источником гемопоэтических клеток; и (5) участие в поддержании гомеостаза кальция в организме

Срастание отломков после перелома сопровождается образованием новой ткани, в результате которого появляется костная мозоль. Сроки заживления переломов колеблются от нескольких недель до нескольких месяцев, в зависимости от возраста (у детей переломы срастаются быстрее), общего состояния организма и местных причин - взаимного расположения отломков, вида перелома и т.д.

Восстановление костной ткани происходит за счёт деления клеток камбиального слоя надкостницы, эндоста, малодифференцированных клеток костного мозга и мезенхимальных клеток (адвентиции сосудов).

В процессе регенерации можно выделить 4 основные стадии:

1. Аутолиз - в ответ на развитие травмы развивается отёк, происходит активная миграция лейкоцитов, аутолиз погибших тканей. Достигает максимума к 3-4 дню после перелома, затем постепенно стихает.

2. Пролиферация и дифференцировка - активное размножение клеток костной ткани и активная выработка минеральной части кости. При неблагоприятных условиях сначала формируется хрящевая ткань, которая затем минерализуется и заменяется костной.

3. Перестройка костной ткани - восстанавливается кровоснабжение кости, из костных балок формируется компактное вещество кости.

4. Полное восстановление - восстановление костномозгового канала, ориентация костных балок в соответствии силовыми линиями нагрузки, формирование надкостницы, восстановление функциональных возможностей повреждённого участка.

Формирование костной мозоли

На месте восстановления кости появляется костная мозоль. Выделяют 4 вида костной мозоли:

1. Периостальную - формируется небольшое утолщение вдоль лини перелома.

2. Эндоостальную - костная мозоль расположена внутри кости, возможно небольшое уменьшение толщины кости в месте перелома.

3. Интермедиальную - костная мозоль расположена между костными отломками, профиль кости не изменён.

4. Параоссальную - окружает кость достаточно крупным выступом, может искажать форму и структуру кости.

Тип сформировавшейся костной мозоли зависит от регенерационных способностей человека и локализации перелома.

Непосредственно после травмы между отломками костей и поврежденными мягкими тканями происходит кровоизлияние, которое распространяется на значительное пространство.

Как реакция на травму, в области перелома развивается асептическое воспаление, экссудация, эмиграция лейкоцитов, что влечет за собой отек тканей вследствие серозного пропитывания их. Отек может быть выражен так сильно, что происходит отслойка эпидермиса в области поврежденного участка и образование пузырей с серозным или серозно-кровянистым экссудатом. В дальнейшем, приблизительно к 10-15-му дню, отек постепенно уменьшается, кровоподтеки исчезают; на месте перелома образуется новая, спаивающая отломки костная ткань. Процесс регенерации костей после перелома всегда происходит путем развития костной мозоли, которая и является патолого-анатомическим субстратом при регенерации кости после перелома.

Костная мозоль состоит из юной мезенхимальной ткани, развивающейся на месте дефекта, и гематомы между отломками, а также в окружности их. С постепенным развитием сосудов начинают формироваться костные пластинки. Они, как и вся мозоль в целом, неоднократно видоизменяются. Процесс регенерации костной ткани в сущности является одним из видов воспалительного процесса. При травме на месте перелома изливается кровь, остаются обрывки размозженных мягких тканей, костного мозга, разорванной надкостницы, сосудов и т.д., пропитанных кровью; гематома расположена между отломками костей и вокруг них.

В первом периоде непосредственно после перелома регенерация выражается в воспалительной гиперемии, экссудации, пролиферации. При этом, с одной стороны, идет процесс разрушения, некроза погибших элементов, с другой - процесс восстановления, регенерации. Регенерация состоит в быстром (24-72 часа) размножении местных клеточных и внеклеточных элементов, образовании первичной костной мозоли (callus). Для образования костной мозоли имеет значение наличие гематомы, так как в процессе регенерации кости большую роль играет внеклеточное живое вещество.

Образование костной мозоли начинается из клеток надкостницы - периоста, эндоста, костного мозга, гаверсовых каналов, соединительной ткани вокруг перелома и внеклеточного вещества (О.Б. Лепешинская).

Первичная мозоль состоит из нескольких слоев:

1. Периостальная, наружная, мозоль развивается из клеток надкостницы (callus externus). Эта мозоль охватывает концы костей снаружи в виде муфты, образуя веретенообразное утолщение. Главную роль в образовании мозоли играет внутренний слой надкостницы. Как известно, надкостница имеет три слоя:

a) наружный (адвентициальный), состоящий из соединительной фиброзной ткани, бедной эластическими волокнами, но богатой сосудами и нервами;

b) средний (фиброзно-эластический), который, наоборот, богат эластическими волокнами и беден сосудами;

c) внутренний (камбиальный), лежащий непосредственно на кости и являющийся специфическим костеобразующим слоем.

Гистологическое изучение процесса образования костной мозоли показывает, что со 2-го дня на месте перелома начинается пролиферация клеток со стороны камбиального слоя. К 3-4-му дню имеется уже большое количество эмбриональных клеток, молодых, вновь образованных сосудов и остеобластов. Эти остеобласты и являются главными клетками, образующими новую костную (остеоидную) ткань, т.е. ткань, имеющую строение костной, но еще не обызвествившуюся. Костеобразование может идти двояко: путем непосредственного развития костной мозоли из указанной эмбриональной (остеоидной) ткани или путем предварительного образования хряща (волокнистого, гиалинового типа). Чем совершеннее репозиция отломков и иммобилизация поврежденной кости, тем больше данных за развитие костной мозоли без предварительного образования хряща.

Двоякий механизм костеобразования может быть объяснен следующим образом:

1) если эмбриональная ткань во время развития мозоли находится в условиях полного покоя, то она дифференцируется прямо в костную ткань, не проходя хрящевой стадии;

2) если же при образовании мозоли эмбриональная ткань подвергается раздражению извне или со стороны костных отломков, то костеобразовательный процесс в мозоли идет всегда с образованием большего или меньшего количества хрящевой ткани, причем хрящ может появиться и в костномозговом канале. Поэтому при заживлении переломов длинных костей хрящевая ткань образуется только в области перелома и в близлежащих участках, на которых отражается движение отломков. Тот факт, что наружная мозоль является наиболее мощной и развивается быстро, объясняется тем, что концы отломков подвергаются большему давлению, чем область внутренней, эндостальной мозоли, а надкостница, богатая кровеносными сосудами, отличается исключительной регенеративной способностью, в частности, камбиальный слой. Образование костной ткани из остеобластов идет в виде выступов молодой остеоидной ткани, исходящих из отломков кости навстречу друг другу. Эти выступы в процессе роста образуют ряд трабекул.

При сохранившейся надкостнице, но при большом дефекте костной ткани, например, после операции поднадкостничной резекции кости, образование новой костной ткани из надкостницы идет интенсивно и может заполнить дефект длиной в несколько сантиметров.

2. Эндостальная, или внутренняя, мозоль (callus internus) развивается параллельно развитию наружной, периостальной мозоли из эндостальной ткани обоих отломков, т.е. из костного мозга; процесс идет путем пролиферации клеток эндоста в виде кольца, спаивающего отломки.Как и в наружной мозоли, здесь имеется воспалительная гиперемия, образование новых сосудов со стороны костного мозга, рассасывание мертвых тканей и жира, развитие остеобластов и остеоидной ткани. Более медленное развитие эндостальной мозоли сравнительно с периостальной объясняется тем, что сосудистая сеть эндостальной мозоли (a. nutritia), которая бедна сосудами, разрушена, в то время как периостальная мозоль снабжена большим количеством сосудов, идущих из окружающих мягких тканей.

3. Интермедиальная, промежуточная, мозоль (callus intermedius) находится между отломками кости, между периостальной и эндосталъной мозолью. Она развивается из гаверсовых каналов, причем в образовании ее принимают участие ткани наружной и внутренней мозоли. При плотном прилегании одного отломка к другому в правильной позиции эта мозоль совершенно не видна.

4. Параоссальная, околокостная, мозоль (callus paraossalis) развивается в мягких тканях вблизи перелома. Эта мозоль бывает наиболее выражена при сильных ушибах и разрывах тканей и представляется в виде отростков кости, распространяющихся иногда далеко в направлении мышц, межмышечной ткани ив область суставов. Она приобретает сходство с оссифицирующим миозитом и наблюдается часто на месте неправильно сросшихся переломов в виде так называемой избыточной мозоли.Параллельно этому процессу костеобразования (первый период) с первых же дней после перелома наблюдается и другой вид деятельности местных клеток - процесс рассасывания при помощи остеокластов, образующих в костной ткани ячейки рассасывания. Вначале идет рассасывание концов старой кости, отломков, а затем и избытка вновь образующейся кости. Процесс рассасывания происходит и во втором периоде заживления перелома, когда уже наступает обратное развитие сосудов и происходит так называемое архитектурное оформление костной мозоли. Кроме остеокластов, в костеобразовании принимают участие и фибробласты, которые могут в дальнейшем переходить в остеобласты, а затем в костные клетки. При переломах различных костей сроки образования костной мозоли различны. В среднем в течение приблизительно одного месяца идет образование первичной костной мозоли, т.е. первичной эластической спайки, благодаря которой непрерывность кости восстанавливается, но в ней нет плотности и еще сохраняется при движении подвижность отломков. В течение следующего месяца наступает окостенение мозоли; в остеоидной ткани первичной мозоли откладываются соли извести и уменьшается ее объем. Мозоль приобретает прочность, т.е. образуется вторичная костная мозоль и наступает сращение, консолидация отломков.

Во втором периоде заживления костной мозоли происходит обратное развитие сосудов, уменьшение и исчезновение всех симптомов воспаления. В связи с прекращением гиперемии прекращается усиленное кровообращение, изменяется среда, уменьшается ацидоз.

В этом периоде усиливается рассасывание частей костной мозоли, которые оказываются излишними. Постепенно идет архитектурная перестройка участка сращения кости, заключающаяся не только в обратном развитии мозоли, но и в восстановлении облитерированного костномозгового канала, в образовании балок или перекладин соответственно нормальному строению. Процесс этот очень продолжительный, оканчивающийся не только после непосредственного заживления перелома и восстановления трудоспособности, но иногда через много месяцев и даже лет. Восстановление бывает настолько полным, что у детей иногда невозможно даже на рентгеновском снимке определить место бывшего перелома.

Заживление костного перелома, костеобразовательный процесс, происходит не всегда с одинаковой скоростью и не всегда по изложенным выше закономерностям; при восстановлении и рассасывании не всегда наблюдается тот вид мозоли, о котором сейчас говорилось, не всегда даже наступает образование костной мозоли и окостенение. Необходимо наличие условий, которые обеспечили бы идеальный тип регенерации, когда место сращения становится незаметным или едва заметным, а функции органа восстанавливаются полностью.

Рис. 9. Посттравматическая регенерация трубчатой кости: а - локализация травмы; б-г - последовательные стадии регенерации без жесткой фиксации репонированных костей (б1, в1 - фрагменты); д - регенерация после фиксации отломков. 1 - надкостница; 2 - перекладины из грубоволокни-стой костной ткани; 3 - соединительнотканный регенерат с островками хрящевой ткани; 4 - костный регенерат из грубово-локнистой костной ткани; 5 - линия сращения (по Р.В. Крстичу, с изменениями)