Уравнение менделеева клапейрона газовые законы. Уравнение состояния идеального газа (уравнение Менделеева - Клапейрона)

Для объяснения свойств вещества в газообразном состоянии используется модель идеального газа.

Идеальным газом называют газ, для которого можно пренебречь размерами молекул и силами молекулярного взаимодействия; соударения молекул в таком газе происходят по закону соударения упругих шаров.

Реальные газы ведут себя подобно идеальному, когда среднее рас­стояние между молекулами во много раз больше их размеров, т. е. при достаточно больших разрежениях.

Состояние газа описывается тремя параметрами V, Р, Т, между которыми существует однозначное соотношение, называемое уравнением Менделеева -Клапейрона.

R - молярная газовая постоянная, определяет рабо­ту, которую совершает 1 моль газа при изобарном нагревании его на 1 К.

Такое название этого уравнения обусловлено, тем, что впервые оно было получено Д.И. Менделеевым (1874г) на основе обобщения результатов, полученных до этого французским учёным Б.П. Клапейроном.

Из уравнения состояния идеального газа вытекает ряд важных следствий:

    При одинаковых температурах и давлениях в равных объёмах любых идеальных газов, содержится одинаковое количество молекул (закон Авагадро).

    Давление смеси химически невзаимодействующих идеальных газов равно сумме парциальных давлений этих газов (закон Дальтона ).

    Отношение произведения давления и объёма идеального газа к его абсолютной температуре есть величина постоянная для данной массы данного газа (объединенный газовый закон)

Всякое изме­нение состояния газа называют термодинамическим процессом.

При переходе данной массы газа из одного состояния в другое в общем случае могут меняться все параметры газа: объём, давление и температура. Однако, иногда меняются какие-либо два из этих параметров, а третий остаётся неизменным. Процессы, при котором один из параметров состояния газа остаётся постоянным, а два других изменяются, называют изопроцессами .

§ 9.2.1 Изотермический процесс (Т= const ). Закон Бойля-Мариотта .

Процесс, протекающий в газе, при котором температура остается постоянной, называютизотермическим («изос»- «одинаковый»; «терме» - «тепло»).

Практически этот процесс можно реализовать, медленно уменьшая или увеличивая объём газа. При медленном сжатии и расширении создаются условия поддержания постоянной температуры газа вследствие теплообмена с окружающей средой.

Если при постоянной температуре увеличивать объём V, давление Р уменьшается, когда объём V уменьшается - давление Р растёт, а произведение Р на V сохраняется.

рV = соnst (9.11)

Этот закон называется законом Бойля – Мариотта , так как почти одновременно был открыт в XVII в. французским ученым Э. Мариоттом и английским ученым Р. Бойлем.

Закон Бойля-Мариотта формулируется так: произведение давления газа на объем для данной массы газа есть величина постоянная:

Графическая зависимость давления газа Р от объёма V изображается в виде кривой (гиперболы), которая носит название изотермы (рис.9.8). Разным температурам соответствуют разные изотермы. Изотерма, соответствующая более высокой температуре, лежит выше изотермы, соответствующей более низкой температуре. А в координатах VT (объём – температура) и PT (давление – температура) изотермы являются прямыми линиями, перпендикулярными оси температур (рис.).

§ 9.2.2 Изобарный процесс (P = const ). Закон Гей-Люссака

Процесс, протекающий в га­зе, при котором давление остается постоянным, называют изобарным («барос» - «тяжесть»). Простейшим примером изобарного процесса является расширение нагреваемого газа в цилиндре со свободным поршнем. Наблюдаемое при этом расширение газа называют тепловым расширением .

Опыты, проведенные в 1802 году французским физи­ком и химиком Гей-Люссаком показали, Объем газа данной массы при постоянном давлении л инейно возрастает с увеличением температуры (закон Гей-Люссака) :

V = V 0 (1 + αt) (9.12)

Вели­чина α называется температурным коэффициентом объемного расши­рения (для всех газов
)

Если заменить температуру, отсчитанную по шкале Цельсия, термодинамической температурой получим закон Гей-Люссака в следующей формулировки: при неизменном давлении отношение объёма дано массы идеального газа к его абсолютной температуре является величиной постоянной, т.е.

Графически эта зависимость в координатах Vt изображается в виде прямой, выходящей из точки t=-273°С. Эту прямую называют изобарой (рис. 9.9). Разным давлениям соответствуют разные изобары. Поскольку при постоянной температуре с увеличением давления объём газа уменьшается, то изобара, соответствующая более высокому давлению, лежит ниже изобары, соответствующеё более низкому давлению. В координатах PV и PT изобары это прямые линии, перпендикулярные оси давления. В области низких температур близ­кой к температуре сжижения (конденсации) газов закон Гей-Люссака не выполняется, поэтому красная линия на графике заменена белой.

§ 9. 2. 3 Изохорный процесс (V = const ). Закон Шарля

Процесс, протекающий в газе, при котором объем остается постоянным, называют изохорным («хорема» - вместимость). Для осуществления изохорного процесса газ помещают в герметический сосуд, не меняющий свой объём

Французский физик Ж. Шарль установил:давление газа данной массы при постоянном объеме возрастает линейно с увеличе­нием температуры (закон Шарля):

Р = Р 0 (1 + γt) (9.14)

(р - давление газа при температуре t,°С; р 0 - его давление при 0°С].

Величина γ называется температурным коэффициентом давления . Ее значение не зависит от природы газа: для всех газов
.

Если заменить температуру, отсчитанную по шкале Цельсия, термодинамической температурой получим закон Шарля в следующей формулировки: при неизменном объёме отношение давления данной массы идеального газа к его абсолютной температуре является величиной постоянной, т.е.

Графически эта зависимость в координатах Рt изображается в виде прямой, выходящей из точки t=-273°С. Эту прямую называют изохорой (рис. 9.10). Разным объёмам соответствуют разные изохоры. Поскольку с увеличением объёма газа при постоянной температуре давление его уменьшается, то изохора, соответствующая большему объёму, лежит ниже изохоры, соответствующей меньшему объёму. В координатах PV и VT изохоры – это прямые линии, которые перпендикулярны оси объёма. В области низких температур близ­кой к температуре сжижения (конденсации) газов закон Шарля, также как и закон Гей-Люссака не выполняется.

За единицу температуры по термодинамической шкале принят кельвин (К); соответствует 1°С.

Температура, отсчитанная по термодинамической шкале температур называется термодинамической температурой . Так как точка плавления льда при нормальном атмосферном давлении, при­нятая за 0°С, равна 273,16 К -1 , то

Газовые законы. Уравнение Менделеева-Клапейрона.

Экспериментальное исследование свойств газов, проведенное в ХVII-XVIII вв. Бойлем, Мариоттом, Гей-Люссаком, Шарлем, привело к формулировке газовых законов.

1. Изотермический процесс – Т= const.

Закон Бойля-Мариотта: pV =const.

График зависимости p от V приведен на рис.2.1. Чем выше изотерма, тем более высокой температуре она соответствует, T 2 >T 1 .

2. Изобарный процесс– p = const.

Закон Гей-Люссака: .

График зависимости V от T приведен на рис. 2.2. Чем ниже к оси температуры наклонена изобара, тем большему давлению она соответствует, р 2 > p 1 .

3. Изохорный процесс– V =const.

Закон Шарля: .

График зависимости р от Т изображен на рис 2.3. Чем ниже к оси температуры наклонена изохора, тем большему объему она соответствует, V 2 > V 1 .

Комбинируя выражения газовых законов, получим уравнение, связывающее р, V , Т (объединенный газовый закон): .

Постоянная в этом уравнении определяется экспериментально. Для количества вещества газа 1 моль она оказалась равной R=8,31 Дж/(моль×К) и была названа универсальной газовой постоянной.

1 моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. Число молекул (структурных единиц) в 1 моле равно числу Авогадро: N A =6,02.10 23 моль -1 . Для R справедливо соотношение: R=k N A

Итак, для одного моля: .

Для произвольного количества газа n = m/m , где m - молярная масса газа. В результате получим уравнение состояния идеального газа, или уравнение Менделеева-Клапейрона .

Каждый школьник, учащийся в десятом классе, на одном из уроков физики изучает закон Клапейрона-Менделеева, его формулу, формулировку, учится применению при решении задач. В технических университетах эта тема тоже входит в курс лекций и практических работ, причем в нескольких дисциплинах, а не только на физике. Закон Клапейрона-Менделеева активно используется в термодинамике при составлении уравнений состояния идеально газа.

Термодинамика, термодинамические состояния и процессы

Термодинамика представляет собой раздел физики, который посвящен изучению общих свойств тел и тепловых явлений в этих телах без учета их молекулярного строения. Давление, объем и температура являются основными величинами, учитывающимися при описании тепловых процессов в телах. Термодинамическим процессом называется изменение состояния системы, т. е. изменение ее основных величин (давление, объем, температура). В зависимости от того, происходят ли изменения основных величин, системы бывают равновесными и неравновесными. Процессы тепловые (термодинамические) можно так классифицировать. То есть если система переходит из одного равновесного состояния в другое, то такие процессы называются, соответственно, равновесными. Неравновесные процессы, в свою очередь, характеризуются переходами неравновесных состояний, то есть основные величины претерпевают изменения. Однако можно их (процессы) разделить на обратимые (возможен обратный переход через те же состояния) и необратимые. Все состояния системы можно описать определенными уравнениями. Для упрощения расчетов в термодинамике вводится такое понятие, как идеальный газ - некая абстракция, которая характеризуется отсутствием взаимодействия на расстоянии между молекулами, размерами которых можно пренебречь ввиду их малого размера. Основные газовые законы и уравнение Менделеева-Клапейрона тесно взаимосвязаны - все законы вытекают из уравнения. Они описывают изопроцессы в системах, то есть такие процессы, в результате которых один из основных параметров остается неизменным (изохорный процесс - не изменяется объем, изотермический - постоянна температура, изобарный - происходит изменение температуры и объема при постоянстве давления). Закон Клапейрона-Менделеева стоит разобрать подробнее.


Уравнение состояния идеального газа

Закон Клапейрона-Менделеева выражает зависимость между давлением, объемом, температурой, количеством вещества именно идеального газа. Можно так же выразить зависимость только между основными параметрами, то есть абсолютной температурой, молярным объемом и давлением. Суть не изменяется, так как молярный объем равен отношению объема к количеству вещества.

Закон Менделеева-Клапейрона: формула

Уравнение состояния идеального газа записывается в виде произведения давления на молярный объем, приравненного к произведению универсальной газовой постоянной и абсолютной температуры. Универсальная газовая постоянная - коэффициент пропорциональности, константа (неизменная величина), выражающая работу расширения моля в процессе увеличения значения температуры на 1 Кельвин в условиях изобарного процесса. Ее величина составляет (приблизительно) 8,314 Дж/(моль*К). Если выразить молярный объем, то получится уравнение вида: р*V=(m/М)*R*Т. Или можно привести к виду: р=nkT, где n - концентрация атомов, к - постоянная Больцмана (R/NА).

Решение задач


Закон Менделеева-Клапейрона, решение задач с его помощью значительно облегчают расчетную часть при проектировании оборудования. Закон при решении задач применяется в двух случаях: задано одно состояние газа и его масса и при неизвестности величины массы газа известен факт ее изменения. Необходимо учитывать, что в случае многокомпонентных систем (смеси газов) записывается уравнение состояния для каждого компонента, т. е. для каждого газа в отдельности. Для установления связи между давлением смеси и давлениями компонентов используется закон Дальтона. Также стоит помнить, что для каждого состояния газа описывается отдельным уравнением, далее решается уже полученная система уравнений. И, наконец, необходимо всегда помнить, что в случае уравнения состояния идеального газа температура является абсолютной величиной, ее значение обязательно берется в Кельвинах. Если в условиях задачи температура измеряется в градусах Цельсия или в каких-либо других, то необходимо произвести перевод в градусы Кельвина.

Берём формулу и подставляем в неё . Получаем:

p = nkT.

Вспомним теперь, что A , где ν - число молей газа:

,

pV = νRT. (3)

Соотношение (3) называется уравнением Менделеева - Клапейрона . Оно даёт взаимосвязь трёх важнейших макроскопических параметров, описывающих состояние идеального газа - давления, объёма и температуры. Поэтому уравнение Менделеева - Клапейрона называется ещё уравнением состояния идеального газа .

Учитывая, что , где m - масса газа, получим другую форму уравнения Менделеева - Клапейрона:

(4)

Есть ещё один полезный вариант этого уравнения. Поделим обе части на V :

Но - плотность газа. Отсюда

(5)

В задачах по физике активно используются все три формы записи (3)-(5).

Изопроцессы

На протяжении этого раздела мы будем придерживаться следующего предположения: масса и химический состав газа остаются неизменными . Иными словами, мы считаем, что:

m = const, то есть нет утечки газа из сосуда или, наоборот, притока газа в сосуд;

µ = const, то есть частицы газа не испытывают каких-либо изменений (скажем, отсутствует диссоциация - распад молекул на атомы).

Эти два условия выполняются в очень многих физически интересных ситуациях (например, в простых моделях тепловых двигателей) и потому вполне заслуживают отдельного рассмотрения.

Если масса газа и его молярная масса фиксированы, то состояние газа определяется тремя макроскопическими параметрами: давлением , объёмом и температурой . Эти параметры связаны друг с другом уравнением состояния (уравнением Менделеева - Клапейрона).

Термодинамический процесс

Термодинамический процесс (или просто процесс ) - это изменение состояния газа с течением времени. В ходе термодинамического процесса меняются значения макроскопических параметров - давления, объёма и температуры.

Особый интерес представляют изопроцессы - термодинамические процессы, в которых значение одного из макроскопических параметров остаётся неизменным. Поочерёдно фиксируя каждый из трёх параметров, мы получим три вида изопроцессов.

1. Изотермический процесс идёт при постоянной температуре газа: T = const.

2. Изобарный процесс идёт при постоянном давлении газа: p = const.

3. Изохорный процесс идёт при постоянном объёме газа: V = const.

Изопроцессы описываются очень простыми законами Бойля - Мариотта, Гей-Люссака и Шарля. Давайте перейдём к их изучению.

Изотермический процесс

При изотермическом процессе температура газа постоянна. В ходе процесса меняются только давление газа и его объём.



Установим связь между давлением p и объёмом V газа в изотермическом процессе. Пусть температура газа равна T . Рассмотрим два произвольных состояния газа: в одном из них значения макроскопических параметров равны p 1 ,V 1 ,T , а во втором - p 2 ,V 2 ,T . Эти значения связаны уравнением Менделеева - Клапейрона:

Как мы сказали с самого начала, масса газа m и его молярная масса µ предполагаются неизменными. Поэтому правые части выписанных уравнений равны. Следовательно, равны и левые части: p 1V 1 = p 2V 2.

Поскольку два состояния газа были выбраны произвольно, мы можем заключить, что в ходе изотермического процесса произведение давления газа на его объём остаётся постоянным :

pV = const.

Данное утверждение называется законом Бойля - Мариотта . Записав закон Бойля - Мариотта в виде

p = ,

можно дать и такую формулировку: в изотермическом процессе давление газа обратно пропорционально его объёму . Если, например, при изотермическом расширении газа его объём увеличивается в три раза, то давление газа при этом в три раза уменьшается.

Как объяснить обратную зависимость давления от объёма с физической точки зрения? При постоянной температуре остаётся неизменной средняя кинетическая энергия молекул газа, то есть, попросту говоря, не меняется сила ударов молекул о стенки сосуда. При увеличении объёма концентрация молекул уменьшается, и соответственно уменьшается число ударов молекул в единицу времени на единицу площади стенки - давление газа падает. Наоборот, при уменьшении объёма концентрация молекул возрастает, их удары сыпятся чаще и давление газа увеличивается.

В этом разделе мы знакомимся с уравнением состояния идеального газа.

Эксперименты показали, что при условиях не слишком отличающихся от нормальных (температура порядка сотен кельвинов, давление порядка одной атмосферы) свойства реальных газов близки к свойствам идеального газа.

Пример. На примере водяного пара покажем, что при обычных условиях свойства реальных газов близки к свойствам идеального. По таблице Менделеева можно определить массу моля Н 2 0 :

Плотность воды в жидком состоянии

Отсюда можно найти объем одного моля воды:

Один моль любого вещества содержит одно и то же число молекул (число Авогадро):

Получаем отсюда объем V 1 , приходящийся на одну молекулу воды:

В конденсированном состоянии молекулы располагаются вплотную друг к другу, то есть в сущности V 1 есть объем молекулы воды, откуда следует оценка ее линейного размера (диаметра):

С другой стороны, известно, что объем V m одного моля любого газа при нормальных условиях равен

Поэтому на одну молекулу водяного пара приходится объем

Это значит, что газ можно нарезать мысленно на кубики с длиной ребра

и в каждом таком кубике окажется одна молекула. Иными словами, L - среднее расстояние между молекулами водяного пара. Мы видим, что L на порядок превосходит размер D молекулы. Аналогичные оценки получаются и для других газов, так что с хорошей точностью можно считать, что молекулы не взаимодействуют друг с другом, и при нормальных условиях газ идеален.

Как уже говорилось, уравнение состояния, имеющее вид, позволяет выразить один термодинамический параметр через два других. Конкретный вид этого уравнения зависит от того, какое вещество и в каком агрегатном состоянии рассматривается. Уравнение состояния идеального газа объединяет ряд экспериментально установленных частных газовых законов. Каждый из них описывает поведение газа при условии, что изменяются лишь два параметра.

1. Закон Бойля - Мариотта . Описывает процесс в идеальном газе при постоянной температуре.

Изотермический процесс - это термодинамический процесс, протекающий при постоянной температуре.

Закон Бойля - Мариотта гласит:

Для данной массы газа при постоянной температуре Т = const произведение давления газа на занимаемый им объем является постоянной величиной

Графически изотермический процесс в различных координатах изображен на рис. 1.7.

Рис.1.7. Изотермический процесс в идеальном газе: 1 - в координатах p V ; 2 - в координатах p - T ; 3 - в координатах T V

Показанные на рис. 1.7-1 кривые представляют собой гиперболы

располагающиеся тем выше, чем выше температура газа.

Экспериментальное исследование закона Бойля - Мариотта можно выполнить с помощью установки, показанной на рис. 1.8. В цилиндре, находящемся при постоянной температуре (что видно из показаний термометра), при перемещении поршня изменяется объем газа. Давление газа измеряется с помощью манометра. Результаты измерений давления и объема газа представляются на диаграмме p = p (V ) .

Рис. 1.8. Экспериментальное изучение изотермического процесса в газе

2. Закон Гей-Люссака. Описывает тепловое расширение идеального газа при постоянном давлении.

Закон Гей-Люссака гласит:

Объем данной массы определенного газа при постоянном давлении пропорционален его абсолютной температуре

Графически изобарный процесс в различных координатах показан на рис. 1.9.

Рис. 1.9. Изобарный процесс в газе: 1 - в координатах p – V; 2 - в координатах V – T; 3 - в координатах P – T

Экспериментальное изучение закона Гей-Люссака можно выполнить с помощью установки, показанной на рис. 1.10. В цилиндре газ нагревается с помощью горелки. Давление газа в процессе нагревания остается неизменным, что видно из показаний манометра. Температура газа измеряется с помощью термометра. Результаты измерений давления и температуры газа представляются на диаграмме V = V(Т) .

Рис. 1.10. Экспериментальное изучение изобарного процесса в газе

3. Закон Шарля. Описывает изменение давления идеального газа с ростом температуры при постоянном объеме.

Изохорный процесс - это процесс, протекающий при постоянном объеме.

Закон Шарля гласит:

Давление данной массы определенного газа при постоянном объеме пропорционально термодинамической температуре

Графически изохорный процесс в различных координатах показан на рис. 1.11.


Рис.1.11. Изохорный процесс в газе: 1 - в координатах p – V; 2 - в координатах p – T; 3 - в координатах V – T

Экспериментальное исследование закона Шарля можно выполнить с помощью установки, показанной на рис. 1.12. В цилиндре газ занимает постоянный объем (поршень неподвижен). При нагревании давление газа увеличивается, а при охлаждении уменьшается. Величина давления измеряется с помощью манометра, а температура газа - с помощью термометра. Результаты измерений давления и температуры газа представляются на диаграмме p=p(Т) .

Рис. 1.12. Экспериментальное изучение изохорного процесса в газе

Если объединить рассмотренные частные газовые законы, то получим уравнение состояния идеального газа (для одного моля)

(1.5)

в которое входит универсальная газовая постоянная R = 8,31 Дж/(моль· К). При одних и тех же значениях объема и температуры системы давление газа пропорционально числу молей вещества

Поэтому для произвольной массы газа m уравнение состояния идеального газа (1.6) примет вид

(1.6)

Это уравнение называют уравнением Клапейрона - Менделеева.

Дополнительная информация:

http://www.plib.ru/library/book/14222.html - Яворский Б.М., Детлаф А.А. Справочник по физике, Наука, 1977 г. – стр. 162–166, - сводная таблица свойств всевозможных изопроцессов с идеальным газом;

http://kvant.mirror1.mccme.ru/1990/08/gazovye_zakony_i_mehanicheskoe.htm - журнал Квант, 1990 г. № 8, стр. 73–76, Д. Александров, Газовые законы и механическое равновесие;

http://www.alleng.ru/d/phys/phys62.htm - Тульчинский М.Е. Качественные задачи по физике, Изд. Просвещение, 1972 г.; задачи № 489, 522, 551 на законы идеального газа;

http://marklv.narod.ru/mkt/str4.htm - школьный урок с картинками по модели идеального газа;

http://marklv.narod.ru/mkt/str7.htm - школьный урок с картинками по изопроцессам с идеальным газом.