Analýza úlohy 19 skúšky z fyziky. Témy jednotnej štátnej skúšky z fyziky, ktoré budú súčasťou písomnej práce

1 . Uveďte počet protónov a počet neutrónov v jadre izotopu argónu .

Riešenie.

Pre izotop argónu máme hmotnostné číslo rovné 39 a poradové číslo rovné 18. Je známe, že hmotnostné číslo je počet protónov a neutrónov v atóme izotopu. Atómové číslo je počet protónov v atóme. Máme teda 18 protónov a 39-18=21 neutrónov.

odpoveď: 1821.

2. Uveďte počet protónov a počet neutrónov v jadre izotopu medi.

Riešenie.

Horný index izotopu ukazuje hmotnostné číslo, teda súčet protónov a neutrónov v jadre izotopu. Dolný index je poradové číslo označujúce počet protónov v jadre. Teda izotopmáme 29 protónov a 63-29 = 34 neutrónov.

odpoveď: 2934.

3.

Uveďte počet protónov a počet neutrónov v jadre najmenej bežného hlavného stabilného izotopu medi.

Riešenie.

Meď je označená symbolom Cu a má poradové číslo 29. Najmenej bežný izotop má hmotnostné číslo 65. Keďže poradové číslo udáva počet protónov v atóme izotopu a hmotnostné číslo je súčet protónov a neutróny v atóme, potom pre daný izotop máme:

29 – počet protónov;

65-29=36 – počet neutrónov.

odpoveď: 2936.

4. Obrázok ukazuje fragment Periodickej tabuľky prvkov D. I. Mendelejeva. Pod názvom každého prvku sú hmotnostné čísla jeho hlavných stabilných izotopov. V tomto prípade dolný index blízko čísla hmotnosti označuje (v percentách) množstvo izotopu v prírode.

Uveďte počet protónov a počet neutrónov v jadre najbežnejšieho stabilného izotopu zinku.

Riešenie.

Zinok, symbol Zn, má atómové číslo 30. To znamená, že v atóme zinku je 30 protónov. Tabuľka ukazuje, že najbežnejší izotop zinku má hmotnostné číslo 64, to znamená, že súčet protónov a neutrónov v jadre tohto izotopu je 64. Odtiaľ dostaneme počet neutrónov: 64-30=34.

odpoveď: 3034.

5. Uveďte hmotnosť a nábojové číslo častice, ktorá spôsobuje jadrovú reakciu.

Riešenie.

kde x je neznáme hmotnostné číslo častice; y je neznáme číslo náboja častice. Odtiaľto nájdeme:

odpoveď: 21.

6. Uveďte hmotnosť a nábojové číslo častice, ktorá sa zrodila v dôsledku jadrovej reakcie:.

Riešenie.

Pri jadrových reakciách sa súčet hmotnostných čísel a nábojových čísel pred reakciou rovná súčtu hmotnostných čísel a nábojových čísel po reakcii. Pomocou tohto pravidla môžeme napísať nasledujúce rovnice:

kde to získame

odpoveď: 10.

7. Uveďte hmotnosť a nábojové číslo jadra, z ktorého sa jadro vytvorí v dôsledku dvoch po sebe nasledujúcich rozpadov alfa.

Riešenie.

Ak vezmeme do úvahy, že počas rozpadu alfa sa atómové číslo zníži o 2 jednotky a hmotnostné číslo o 4 jednotky, potom pri dvoch rozpadoch alfa dôjde k zníženiu atómového čísla o 4 a hmotnostného čísla o 8. Vo výslednom izotope hmotnostné číslo je 216 a atómové číslo 84. Preto bolo na začiatku hmotnostné číslo 216+8=224 a poradové číslo 84+4=88.

odpoveď: 22488.

8. Uveďte hmotnosť a nábojové číslo jadra, ktoré vzniklo v dôsledku dvoch po sebe nasledujúcich alfa rozpadov jadra rádia.

Riešenie.

Počas rozpadu alfa sa atómové číslo izotopu zníži o 2 jednotky a hmotnostné číslo o 4 jednotky. Preto pri dvoch rozpadoch alfa sa poradové číslo zníži o 4 a hmotnostné číslo o 8.

Na začiatku je hmotnostné číslo v izotope 224 a sériové číslo je 88. Po dvoch rozpadoch alfa máme hmotnostné číslo 224-8=216 a sériové číslo 88-4=84.

odpoveď: 21684.

9. Uveďte hmotnosť a nábojové číslo jadra, ktoré vzniklo spolu s neutrónom v dôsledku zrážky jadra bórua a-častice.

Riešenie.

Izotop bóru sa zrazí s časticou alfa, výsledkom čoho je neutrón a ďalšia častica. Vzhľadom na to, že častica alfa obsahuje dva protóny a dva neutróny, máme reakciu formy

Pomocou zákona zachovania hmotnosti a poradových čísel pred a po jadrovej reakcii dostaneme pre neznámu časticu:

odkiaľ z toho vyplýva

to znamená, že hmotnostné číslo častice je 14 a atómové číslo je 7.

odpoveď: 147.

10. Uveďte hmotnosť a nábojové číslo jadra, ktoré vzniklo spolu s protónom v dôsledku zrážky jadra lítiaa a-častice.

Riešenie.

Je známe, že častica alfa obsahuje 2 protóny a 2 neutróny, to znamená, že jej hmotnostné číslo je 4 a jej nábojové číslo je 2. V dôsledku jadrovej reakcie sa získa protón, ktorý má hmotnostné číslo 1 a číslo poplatku 1, máme:

.

Vzhľadom na zákon zachovania hmotnostných a nábojových čísel pred a po reakcii môžeme pre neznáme x a y napísať nasledujúce rovnice:

kde

to znamená, že hmotnostné číslo neznámeho prvku je 10 a číslo náboja je 4.

odpoveď: 104.

11. Určte počet protónov a počet neutrónov v jadre izotopu kryptónu.

Riešenie.

V izotope kryptónu je horný index hmotnostné číslo a dolný index je atómové číslo. Hmotnostné číslo sa rovná súčtu protónov a neutrónov v jadre a atómové číslo udáva počet protónov. Tento izotop má teda 36 protónov a 88-36 = 52 neutrónov.

odpoveď: 3652.

12. Určte počet protónov a počet neutrónov v jadre izotopu zirkónia.

Riešenie.

V izotope kryptónu je horný index hmotnostné číslo a dolný index je atómové číslo. Hmotnostné číslo sa rovná súčtu protónov a neutrónov v jadre a atómové číslo udáva počet protónov. Tento izotop má teda 40 protónov a 92-40 = 52 neutrónov.

odpoveď: 4052.

13. Určte počet elektrónov v elektrónovom obale neutrálneho atómu berýlia

Riešenie.

Horný index ukazuje hmotnostné číslo izotopu, to znamená počet protónov a neutrónov v atóme. Dolný index je poradové číslo, ktoré sa rovná počtu protónov v jadre atómu. Z toho vyplýva, že počet neutrónov v atóme berýlia je 7-4=3 a počet elektrónov je 4, keďže atóm je neutrálny a 4 elektróny kompenzujú kladný náboj 4 protónov.

odpoveď: 43.

14 Určte počet elektrónov v elektrónovom obale neutrálneho atómu kyslíkaa počet neutrónov v jeho jadre.

Riešenie.

Horný index ukazuje hmotnostné číslo izotopu, to znamená počet protónov a neutrónov v atóme. Dolný index je poradové číslo, ktoré sa rovná počtu protónov v jadre atómu. Z toho vyplýva, že počet neutrónov v atóme kyslíka je 21-8 = 13 a počet elektrónov je 8, pretože atóm je neutrálny a 8 elektrónov kompenzuje kladný náboj 8 protónov.

odpoveď: 813.

15. Prvok mendelevium sa získal bombardovaním jadier prvku X časticami v súlade s reakciou. Určte číslo náboja a hmotnostné číslo prvku X.

Riešenie.

Pri jadrových reakciách sa súčet hmotnostných a nábojových čísel pred reakciou rovná zodpovedajúcim súčtom hmotnostných a nábojových čísel po reakcii. To znamená, že pre danú jadrovú reakciu môžeme napísať rovnosti

odkiaľ pochádza hromadné číslo?a číslo poplatku.

odpoveď: 99253.

16. Reakciou sa opisuje štiepenie jadra uránu tepelnými neutrónmi. V tomto prípade sa vytvorilo jadro chemického prvku. Určte nábojové číslo X a hmotnostné číslo Y prvku Z.

Riešenie.

Stanovme náboj a hmotnostné číslo prvku Z z podmienky, že súčet hmotností a nábojových čísel pred a po reakcii zostane zachovaný, to znamená, že pre túto reakciu môžeme napísať rovnosti:

Tu sa berie do úvahy, že gama kvantum nemá náboj ani hmotnosť, preto sa jeho nábojové a hmotnostné čísla rovnajú nule. Dostaneme:

odpoveď: 3694.

17. Fluórové jadrozachytil elektrón. Určte číslo náboja a hmotnostné číslo jadra vytvoreného v dôsledku tejto reakcie.

Riešenie.

Túto jadrovú reakciu možno napísať ako

,

to znamená, že keď sa zachytí elektrón (záporne nabitá častica), nábojové číslo atómu fluóru sa zníži o 1 a stane sa rovným 9-1=8. Hmotnostné číslo, ktoré sa rovná počtu protónov a neutrónov v jadre, zostáva nezmenené 18.

odpoveď: 818.

18. Rádioaktívny izotop sodíkaskúsený beta rozpad. Určte číslo náboja a hmotnostné číslo jadra vytvoreného v dôsledku tejto reakcie.

Riešenie.

Pri beta rozpade jadro emituje beta časticu. V tomto prípade sa atómové číslo izotopu zvýši o 1, ale hmotnostné číslo zostane nezmenené. Jadrovú reakciu takéhoto rozpadu možno napísať ako

,

kde

to znamená, že v dôsledku toho sa číslo náboja stalo 12, ale hmotnostné číslo zostalo rovné 24.

odpoveď: 1224.

19. Určte počet protónov a počet neutrónov v jadre izotopu neónu.

Riešenie.

Horný index izotopu je hmotnostné číslo, teda počet protónov a neutrónov v izotopovom jadre. Dolný index je atómové číslo (číslo náboja), teda počet protónov v jadre. V izotope neónu je teda 10 protónov a 18-10 = 8 neutrónov.

odpoveď: 108.

20. Určte počet protónov a počet neutrónov v jadre izotopu sodíka.

Riešenie.

Horný index izotopu je hmotnostné číslo, teda počet protónov a neutrónov v izotopovom jadre. Dolný index je atómové číslo (číslo náboja), teda počet protónov v jadre. V izotope sodíka je teda 11 protónov a 24-11 = 13 neutrónov.

odpoveď: 1113.

21. Obrázok ukazuje fragment Periodickej tabuľky prvkov D. I. Mendelejeva. Pod názvom každého prvku sú hmotnostné čísla jeho hlavných stabilných izotopov. V tomto prípade dolný index blízko čísla hmotnosti označuje (v percentách) množstvo izotopu v prírode.

Určte počet protónov a počet neutrónov v jadre najbežnejšieho izotopu draslíka.

Riešenie.

Tabuľka ukazuje, že najbežnejší izotop draslíka má hmotnostné číslo 39 a atómové číslo 19. Atómové číslo je počet protónov v jadre a hmotnostné číslo je súčet protónov a neutrónov v jadre. . V jadre najbežnejšieho izotopu draslíka je teda 19 protónov a 39-19 = 20 neutrónov.

odpoveď: 1920.

22. Obrázok ukazuje fragment periodickej sústavy prvkov od D.I. Mendelejev. Pod názvom každého prvku sú hmotnostné čísla jeho hlavných stabilných izotopov. V tomto prípade dolný index blízko čísla hmotnosti označuje (v percentách) množstvo izotopu v prírode.

Určte počet protónov a počet neutrónov v jadre najbežnejšieho izotopu gália.

Riešenie.

Tabuľka ukazuje, že hmotnostné číslo najbežnejšieho izotopu gália je 69 a jeho atómové číslo je 31. Hmotnostné číslo udáva počet protónov a neutrónov v jadre izotopu a atómové číslo je počet protónov v jadre izotopu. jadro. Izotop gália má teda 31 protónov a 69-31 = 38 neutrónov.

odpoveď: 3138.

23. V dôsledku fúznej reakcie jadra deutéria s jadromv súlade s reakciou vzniká jadro bóru a neutrón:. Určte nábojové číslo Y a hmotnostné číslo X jadra Z.

Riešenie.

kde

odpoveď: 49.

24. Následkom zrážky jadra uránu s časticoudošlo k štiepeniu jadra uránu, opísanému reakciou. Určte nábojové číslo X a hmotnostné číslo Y častice Z.

Riešenie.

Hodnota X je hmotnostné číslo jadra Z a hodnota Y je jeho poradové číslo (číslo náboja). Berúc do úvahy zákon zachovania hmotnostných a nábojových čísel pred a po reakcii, môžeme napísať rovnosti:

kde

odpoveď: 01.

25. Uveďte počet protónov a počet neutrónov v jadre izotopu india.

Riešenie.

Horný index izotopu je hmotnostné číslo, to znamená počet protónov a neutrónov v jadre, a dolný index je poradové číslo, počet protónov v jadre. Pre tento izotop máme 49 protónov a 115-49 = 66 neutrónov.

odpoveď: 4966.

26. Uveďte počet protónov a počet neutrónov v jadre izotopu xenónu.

Riešenie.

Horný index izotopu znamená hmotnostné číslo, teda súčet protónov a neutrónov v jadre izotopu. Dolný index je číslo náboja, to znamená počet protónov v jadre. Daný izotop xenónu má teda 54 protónov a 112-54 = 58 neutrónov.

odpoveď: 5458.

27. Uveďte počet elektrónov v elektrónovom obale neutrálneho atómu báriaa počet neutrónov v jeho jadre.

Riešenie.

Horný index atómu bária je hmotnostné číslo označujúce súčet protónov a neutrónov v jadre. Dolný index je číslo náboja, ktoré udáva počet protónov v jadre. To znamená, že v jadre bária je 56 protónov a 145-56 = 89 neutrónov. Keďže atóm bária je neutrálny, počet elektrónov v jeho elektrónovom obale sa rovná počtu protónov, to znamená, že ich je 56.

odpoveď: 5689.

28. Uveďte počet elektrónov v elektrónovom obale neutrálneho atómua počet neutrónov v jeho jadre.

Riešenie.

Horný index atómu bária je hmotnostné číslo označujúce súčet protónov a neutrónov v jadre. Dolný index je číslo náboja, ktoré udáva počet protónov v jadre. To znamená, že v jadre cézia je 55 protónov a 112-55 = 57 neutrónov. Keďže atóm bária je neutrálny, počet elektrónov v jeho elektrónovom obale sa rovná počtu protónov, to znamená, že ich je 55.

odpoveď: 5557.

29. .

Riešenie.

Horný index izotopu je hmotnostné číslo, teda súčet protónov a neutrónov v jadre. Dolný index je poradové číslo označujúce počet protónov v jadre atómu izotopu. Pre izotop argónu teda máme 18 protónov a 37-18 = 19 neutrónov.

odpoveď: 1819.

30. Uveďte počet protónov a počet neutrónov v jadre?

Riešenie.

Horný index izotopu je hmotnostné číslo, teda súčet protónov a neutrónov v jadre. Dolný index je poradové číslo označujúce počet protónov v jadre atómu izotopu. Pre daný izotop máme teda 20 protónov a 48-20 = 28 neutrónov.

odpoveď: 2028.

Zmeny v úlohách jednotnej štátnej skúšky z fyziky na rok 2019 žiadny rok.

Štruktúra úloh jednotnej štátnej skúšky z fyziky-2019

Skúšobná práca pozostáva z dvoch častí, vrátane 32 úloh.

Časť 1 obsahuje 27 úloh.

  • V úlohách 1–4, 8–10, 14, 15, 20, 25–27 je odpoveďou celé číslo alebo konečný desatinný zlomok.
  • Odpoveď na úlohy 5–7, 11, 12, 16–18, 21, 23 a 24 je postupnosť dvoch čísel.
  • Odpoveďou na úlohy 19 a 22 sú dve čísla.

Časť 2 obsahuje 5 úloh. Odpoveď na úlohy 28–32 obsahuje podrobný popis celého priebehu úlohy. Druhú časť úloh (s podrobnou odpoveďou) posudzuje odborná komisia na základe.

Témy jednotnej štátnej skúšky z fyziky, ktoré budú súčasťou písomnej práce

  1. Mechanika(kinematika, dynamika, statika, zákony zachovania v mechanike, mechanické vibrácie a vlny).
  2. Molekulárna fyzika(molekulárna kinetická teória, termodynamika).
  3. Elektrodynamika a základy SRT(elektrické pole, jednosmerný prúd, magnetické pole, elektromagnetická indukcia, elektromagnetické kmitanie a vlny, optika, základy SRT).
  4. Kvantová fyzika a prvky astrofyziky(vlnovo-korpuskulárny dualizmus, atómová fyzika, fyzika atómového jadra, prvky astrofyziky).

Trvanie jednotnej štátnej skúšky z fyziky

Celá skúšobná práca bude dokončená 235 minút.

Približný čas na dokončenie úloh rôznych častí práce je:

  1. na každú úlohu s krátkou odpoveďou – 3–5 minút;
  2. na každú úlohu s podrobnou odpoveďou – 15–20 minút.

Čo si môžete vziať na skúšku:

  • Používa sa neprogramovateľná kalkulačka (pre každého študenta) s možnosťou výpočtu goniometrických funkcií (cos, sin, tg) a pravítko.
  • Zoznam doplnkových zariadení a zariadení, ktorých použitie je povolené pre Jednotnú štátnu skúšku, schvaľuje Rosobrnadzor.

Dôležité!!! Počas skúšky by ste sa nemali spoliehať na cheaty, tipy alebo používanie technických prostriedkov (telefóny, tablety). Video dohľad na Jednotnej štátnej skúške 2019 bude posilnený o ďalšie kamery.

Jednotná štátna skúška boduje z fyziky

  • 1 bod - za 1-4, 8, 9, 10, 13, 14, 15, 19, 20, 22, 23, 25, 26, 27 úloh.
  • 2 body – 5, 6, 7, 11, 12, 16, 17, 18, 21, 24.
  • 3 body – 28, 29, 30, 31, 32.

Spolu: 52 bodov(maximálne primárne skóre).

Čo potrebujete vedieť pri príprave úloh na jednotnú štátnu skúšku:

  • Poznať/pochopiť význam fyzikálnych pojmov, veličín, zákonov, princípov, postulátov.
  • Vedieť popísať a vysvetliť fyzikálne javy a vlastnosti telies (vrátane vesmírnych objektov), ​​výsledky experimentov... uviesť príklady praktického využitia fyzikálnych poznatkov
  • Rozlišujte hypotézy od vedeckej teórie, vyvodzujte závery na základe experimentu atď.
  • Vedieť aplikovať získané vedomosti pri riešení fyzikálnych úloh.
  • Využívať získané vedomosti a zručnosti v praktických činnostiach a bežnom živote.

Kde začať s prípravou na jednotnú štátnu skúšku z fyziky:

  1. Preštudujte si teóriu potrebnú pre každú úlohu.
  2. Precvičovacie testové úlohy z fyziky vypracované na základe Jednotnej štátnej skúšky. Na našej stránke budú aktualizované úlohy a možnosti z fyziky.
  3. Spravujte svoj čas správne.

Prajeme vám úspech!

Príprava na OGE a Jednotnú štátnu skúšku

Stredné všeobecné vzdelanie

Linka UMK A.V. Grachev. Fyzika (10-11) (základná, pokročilá)

Linka UMK A.V. Grachev. Fyzika (7-9)

Linka UMK A.V. Peryshkin. Fyzika (7-9)

Príprava na jednotnú štátnu skúšku z fyziky: príklady, riešenia, vysvetlenia

S učiteľom rozoberáme úlohy jednotnej štátnej skúšky z fyziky (možnosť C).

Lebedeva Alevtina Sergeevna, učiteľka fyziky, 27 rokov pracovných skúseností. Čestné osvedčenie Ministerstva školstva Moskovskej oblasti (2013), Poďakovanie od vedúceho mestskej časti Voskresensky (2015), Osvedčenie prezidenta Asociácie učiteľov matematiky a fyziky Moskovskej oblasti (2015).

Práca predstavuje úlohy rôznych úrovní obtiažnosti: základná, pokročilá a vysoká. Úlohy základnej úrovne sú jednoduché úlohy, ktoré preverujú zvládnutie najdôležitejších fyzikálnych pojmov, modelov, javov a zákonitostí. Úlohy na pokročilej úrovni sú zamerané na preverenie schopnosti používať fyzikálne pojmy a zákony na analýzu rôznych procesov a javov, ako aj schopnosť riešiť problémy pomocou jedného alebo dvoch zákonov (vzorcov) na ktorúkoľvek z tém školského kurzu fyziky. V práci 4 sú úlohy 2. časti úlohami vysokej zložitosti a testujú schopnosť používať fyzikálne zákony a teórie v zmenenej alebo novej situácii. Splnenie takýchto úloh si vyžaduje aplikáciu vedomostí z dvoch alebo troch úsekov fyziky naraz, t.j. vysoká úroveň výcviku. Táto možnosť plne zodpovedá demo verzii Jednotnej štátnej skúšky 2017, úlohy sú prevzaté z otvorenej banky úloh Jednotnej štátnej skúšky.

Obrázok ukazuje graf závislosti rýchlostného modulu na čase t. Určte z grafu vzdialenosť prejdenú autom v časovom intervale od 0 do 30 s.


Riešenie. Dráhu prejdenú autom v časovom intervale od 0 do 30 s možno najjednoduchšie definovať ako plochu lichobežníka, ktorého základňami sú časové intervaly (30 – 0) = 30 s a (30 – 10). ) = 20 s a výška je rýchlosť v= 10 m/s, t.j.

S = (30 + 20) s 10 m/s = 250 m.
2

Odpoveď. 250 m.

Bremeno s hmotnosťou 100 kg sa pomocou lana zdvíha vertikálne nahor. Na obrázku je znázornená závislosť projekcie rýchlosti V zaťaženie na osi smerujúce nahor v závislosti od času t. Určte modul sily ťahu kábla počas zdvihu.



Riešenie. Podľa grafu závislosti projekcie rýchlosti v zaťaženie na osi smerujúcej zvisle nahor v závislosti od času t, môžeme určiť priemet zrýchlenia nákladu

a = v = (8 – 2) m/s = 2 m/s2.
t 3 s

Na zaťaženie pôsobí: gravitačná sila smerujúca vertikálne nadol a napínacia sila kábla smerujúca vertikálne nahor pozdĺž kábla (pozri obr. 2. Zapíšme si základnú rovnicu dynamiky. Využime druhý Newtonov zákon. Geometrický súčet síl pôsobiacich na teleso sa rovná súčinu hmotnosti telesa a zrýchlenia, ktoré mu udeľuje.

+ = (1)

Napíšme rovnicu pre projekciu vektorov v referenčnom systéme spojenom so zemou, smerujúc os OY nahor. Projekcia napínacej sily je kladná, pretože smer sily sa zhoduje so smerom osi OY, projekcia gravitačnej sily je záporná, pretože vektor sily je opačný k osi OY, projekcia vektora zrýchlenia je tiež pozitívny, takže telo sa pohybuje so zrýchlením nahor. Máme

Tmg = ma (2);

zo vzorca (2) modul ťahovej sily

T = m(g + a) = 100 kg (10 + 2) m/s2 = 1200 N.

Odpoveď. 1200 N.

Teleso sa ťahá pozdĺž drsného vodorovného povrchu konštantnou rýchlosťou, ktorej modul je 1,5 m/s, pričom sa naň pôsobí silou, ako je znázornené na obrázku (1). V tomto prípade je modul klznej trecej sily pôsobiacej na teleso 16 N. Aký výkon vyvíja sila? F?



Riešenie. Predstavme si fyzikálny proces špecifikovaný v úlohe a urobme si schematický nákres označujúci všetky sily pôsobiace na teleso (obr. 2). Napíšme si základnú rovnicu dynamiky.

Tr + + = (1)

Po zvolení referenčného systému spojeného s pevnou plochou napíšeme rovnice pre projekciu vektorov na zvolené súradnicové osi. Podľa podmienok problému sa teleso pohybuje rovnomerne, pretože jeho rýchlosť je konštantná a rovná sa 1,5 m / s. To znamená, že zrýchlenie tela je nulové. Na teleso pôsobia horizontálne dve sily: sila klzného trenia tr. a sila, ktorou je teleso ťahané. Priemet trecej sily je negatívny, pretože vektor sily sa nezhoduje so smerom osi X. Projekcia sily F pozitívne. Pripomíname, že na nájdenie projekcie spustíme kolmicu zo začiatku a konca vektora na zvolenú os. Ak to vezmeme do úvahy, máme: F cosα – F tr = 0; (1) vyjadrime projekciu sily F, Toto F cosα = F tr = 16 N; (2) potom sa sila vyvinutá silou bude rovnať N = F cosα V(3) Urobme náhradu, berúc do úvahy rovnicu (2), a dosaďte zodpovedajúce údaje do rovnice (3):

N= 16 N · 1,5 m/s = 24 W.

Odpoveď. 24 W.

Zaťaženie pripevnené na ľahkú pružinu s tuhosťou 200 N/m podlieha vertikálnym osciláciám. Na obrázku je znázornený graf závislosti posunu X z času na čas načítať t. Určte, aká je hmotnosť nákladu. Svoju odpoveď zaokrúhlite na celé číslo.


Riešenie. Hmota na pružine podlieha vertikálnym osciláciám. Podľa grafu posunu zaťaženia X z času t, určíme periódu kmitania záťaže. Doba oscilácie sa rovná T= 4 s; z vzorca T= 2π vyjadrime hmotnosť m nákladu


= T ; m = T 2 ; m = k T 2 ; m= 200 N/m (4 s) 2 = 81,14 kg ≈ 81 kg.
k 4π 2 4π 2 39,438

odpoveď: 81 kg.

Na obrázku je znázornený systém dvoch svetelných blokov a beztiažového kábla, pomocou ktorého udržíte rovnováhu alebo zdvihnete bremeno s hmotnosťou 10 kg. Trenie je zanedbateľné. Na základe analýzy vyššie uvedeného obrázku vyberte dva pravdivé tvrdenia a vo svojej odpovedi uveďte ich čísla.


  1. Aby ste udržali záťaž v rovnováhe, musíte na koniec lana pôsobiť silou 100 N.
  2. Blokový systém znázornený na obrázku nezískava žiadnu silu.
  3. h, musíte vytiahnuť časť lana dĺžky 3 h.
  4. Na pomalé zdvíhanie bremena do výšky hh.

Riešenie. Pri tomto probléme je potrebné pamätať na jednoduché mechanizmy, a to bloky: pohyblivý a pevný blok. Pohyblivý blok poskytuje dvojnásobný nárast sily, zatiaľ čo časť lana je potrebné ťahať dvakrát dlhšie a pevný blok sa používa na presmerovanie sily. V práci jednoduché mechanizmy výhry nedávajú. Po analýze problému okamžite vyberieme potrebné vyhlásenia:

  1. Na pomalé zdvíhanie bremena do výšky h, musíte vytiahnuť časť lana dĺžky 2 h.
  2. Aby ste udržali záťaž v rovnováhe, musíte na koniec lana pôsobiť silou 50 N.

Odpoveď. 45.

Hliníkové závažie pripevnené na beztiažový a neroztiahnuteľný závit je úplne ponorené do nádoby s vodou. Náklad sa nedotýka stien a dna nádoby. Potom sa do tej istej nádoby s vodou ponorí železné závažie, ktorého hmotnosť sa rovná hmotnosti hliníkového závažia. Ako sa v dôsledku toho zmení modul ťažnej sily závitu a modul gravitačnej sily pôsobiacej na zaťaženie?

  1. Zvyšuje;
  2. Znižuje sa;
  3. nemení sa.


Riešenie. Analyzujeme stav problému a zvýrazníme tie parametre, ktoré sa počas štúdie nemenia: ide o hmotnosť telesa a kvapalinu, do ktorej je teleso ponorené na závite. Potom je lepšie urobiť schematický nákres a uviesť sily pôsobiace na zaťaženie: napätie nite F ovládanie, nasmerované nahor pozdĺž vlákna; gravitácia smerujúca vertikálne nadol; Archimedova sila a, pôsobiace zo strany kvapaliny na ponorené teleso a smerujúce nahor. Podľa podmienok úlohy je hmotnosť bremien rovnaká, preto sa modul gravitačnej sily pôsobiacej na bremeno nemení. Keďže hustota nákladu je iná, bude sa líšiť aj objem.

V = m .
p

Hustota železa je 7800 kg/m3 a hustota hliníkového nákladu je 2700 kg/m3. teda V a< V a. Teleso je v rovnováhe, výslednica všetkých síl pôsobiacich na teleso je nulová. Nasmerujme súradnicovú os OY nahor. Základnú rovnicu dynamiky, berúc do úvahy priemet síl, píšeme v tvare F ovládanie + F amg= 0; (1) Vyjadrime ťahovú silu F kontrola = mgF a(2); Archimedova sila závisí od hustoty kvapaliny a objemu ponorenej časti telesa F a = ρ gV p.h.t. (3); Hustota kvapaliny sa nemení a objem železného telesa je menší V a< V a, preto bude Archimedova sila pôsobiaca na zaťaženie železa menšia. Dospeli sme k záveru o module napínacej sily závitu, pri práci s rovnicou (2), bude sa zvyšovať.

Odpoveď. 13.

Blok hmoty m skĺzne z pevnej hrubej naklonenej roviny s uhlom α na základni. Modul zrýchlenia bloku je rovný a, modul rýchlosti bloku sa zvyšuje. Odpor vzduchu možno zanedbať.

Vytvorte súlad medzi fyzikálnymi veličinami a vzorcami, pomocou ktorých ich možno vypočítať. Pre každú pozíciu v prvom stĺpci vyberte zodpovedajúcu pozíciu z druhého stĺpca a zapíšte si vybrané čísla do tabuľky pod príslušné písmená.

B) Súčiniteľ trenia medzi kvádrom a naklonenou rovinou

3) mg cosα

4) sinα – a
g cosα

Riešenie. Táto úloha si vyžaduje uplatnenie Newtonových zákonov. Odporúčame urobiť schematický výkres; označujú všetky kinematické charakteristiky pohybu. Ak je to možné, znázornite vektor zrýchlenia a vektory všetkých síl pôsobiacich na pohybujúce sa teleso; pamätajte, že sily pôsobiace na teleso sú výsledkom interakcie s inými telesami. Potom napíšte základnú rovnicu dynamiky. Vyberte referenčný systém a zapíšte výslednú rovnicu pre projekciu vektorov sily a zrýchlenia;

Podľa navrhovaného algoritmu urobíme schematický nákres (obr. 1). Obrázok znázorňuje sily pôsobiace na ťažisko bloku a súradnicové osi referenčného systému spojené s povrchom naklonenej roviny. Keďže všetky sily sú konštantné, pohyb bloku bude s rastúcou rýchlosťou rovnomerne premenlivý, t.j. vektor zrýchlenia smeruje v smere pohybu. Zvoľme smer osí, ako je znázornené na obrázku. Zapíšme si projekcie síl na vybrané osi.


Napíšme si základnú rovnicu dynamiky:

Tr + = (1)

Napíšme túto rovnicu (1) pre projekciu síl a zrýchlenia.

Na osi OY: priemet pozemnej reakčnej sily je pozitívny, pretože vektor sa zhoduje so smerom osi OY NY = N; priemet trecej sily je nulový, pretože vektor je kolmý na os; projekcia gravitácie bude záporná a rovnaká mg y= mg cosa; vektorová projekcia zrýchlenia a y= 0, pretože vektor zrýchlenia je kolmý na os. Máme Nmg cosα = 0 (2) z rovnice vyjadríme reakčnú silu pôsobiacu na blok zo strany naklonenej roviny. N = mg cosα (3). Zapíšme si projekcie na osi OX.

Na osi OX: projekcia sily N sa rovná nule, pretože vektor je kolmý na os OX; Priemet trecej sily je negatívny (vektor je nasmerovaný v opačnom smere vzhľadom na zvolenú os); projekcia gravitácie je kladná a rovná sa mg x = mg sinα (4) z pravouhlého trojuholníka. Projekcia zrýchlenia je pozitívna a x = a; Potom napíšeme rovnicu (1) s prihliadnutím na projekciu mg sinα – F tr = ma (5); F tr = m(g sinα – a) (6); Pamätajte, že trecia sila je úmerná sile normálneho tlaku N.

A-priorstvo F tr = μ N(7) vyjadríme koeficient trenia kvádra na naklonenej rovine.

μ = F tr = m(g sinα – a) = tgα – a (8).
N mg cosα g cosα

Pre každé písmeno vyberieme vhodné pozície.

Odpoveď. A – 3; B – 2.

Úloha 8. Plynný kyslík je v nádobe s objemom 33,2 litra. Tlak plynu je 150 kPa, jeho teplota je 127° C. Určte hmotnosť plynu v tejto nádobe. Vyjadrite svoju odpoveď v gramoch a zaokrúhlite na najbližšie celé číslo.

Riešenie. Je dôležité venovať pozornosť prevodu jednotiek do sústavy SI. Previesť teplotu na Kelvina T = t°C + 273, objem V= 33,2 l = 33,2 · 10 –3 m 3; Premieňame tlak P= 150 kPa = 150 000 Pa. Použitie stavovej rovnice ideálneho plynu

Vyjadrime hmotnosť plynu.

Nezabudnite venovať pozornosť tomu, ktoré jednotky sú požiadané o zapísanie odpovede. Je to veľmi dôležité.

Odpoveď.'48

Úloha 9. Ideálny monatomický plyn v množstve 0,025 mol expanduje adiabaticky. Zároveň klesla jeho teplota z +103°C na +23°C. Koľko práce vykonal plyn? Vyjadrite svoju odpoveď v jouloch a zaokrúhlite na najbližšie celé číslo.

Riešenie. Po prvé, plyn je monatomický počet stupňov voľnosti i= 3, po druhé, plyn expanduje adiabaticky - to znamená bez výmeny tepla Q= 0. Plyn funguje tak, že znižuje vnútornú energiu. Ak to vezmeme do úvahy, napíšeme prvý termodynamický zákon v tvare 0 = ∆ U + A G; (1) vyjadrime prácu plynu A g = –∆ U(2); Zmenu vnútornej energie pre monatomický plyn píšeme ako

Odpoveď. 25 J.

Relatívna vlhkosť časti vzduchu pri určitej teplote je 10%. Koľkokrát treba zmeniť tlak tejto časti vzduchu, aby sa pri konštantnej teplote zvýšila jeho relatívna vlhkosť o 25 %?

Riešenie.Školákom najčastejšie spôsobujú ťažkosti otázky súvisiace so sýtou parou a vlhkosťou vzduchu. Na výpočet relatívnej vlhkosti vzduchu použijeme vzorec

Podľa podmienok problému sa teplota nemení, čo znamená, že tlak nasýtených pár zostáva rovnaký. Napíšme vzorec (1) pre dva stavy vzduchu.

φ1 = 10 %; φ 2 = 35 %

Vyjadrime tlak vzduchu zo vzorcov (2), (3) a nájdime tlakový pomer.

P 2 = φ 2 = 35 = 3,5
P 1 φ 1 10

Odpoveď. Tlak by sa mal zvýšiť 3,5-krát.

Horúca kvapalná látka sa pomaly ochladzovala v taviacej peci pri konštantnom výkone. V tabuľke sú uvedené výsledky meraní teploty látky v priebehu času.

Vyberte z poskytnutého zoznamu dva vyhlásenia, ktoré zodpovedajú výsledkom vykonaných meraní a uvádzajú ich čísla.

  1. Teplota topenia látky za týchto podmienok je 232 °C.
  2. Za 20 minút. po začatí meraní bola látka iba v tuhom stave.
  3. Tepelná kapacita látky v kvapalnom a pevnom skupenstve je rovnaká.
  4. Po 30 min. po začatí meraní bola látka iba v tuhom stave.
  5. Proces kryštalizácie látky trval viac ako 25 minút.

Riešenie. Ako sa látka ochladzovala, jej vnútorná energia klesala. Výsledky meraní teploty nám umožňujú určiť teplotu, pri ktorej látka začína kryštalizovať. Zatiaľ čo sa látka mení z kvapalnej na tuhú, teplota sa nemení. Keďže vieme, že teplota topenia a teplota kryštalizácie sú rovnaké, zvolíme výrok:

1. Teplota topenia látky za týchto podmienok je 232°C.

Druhé správne tvrdenie je:

4. Po 30 min. po začatí meraní bola látka iba v tuhom stave. Pretože teplota v tomto časovom bode je už pod teplotou kryštalizácie.

Odpoveď. 14.

V izolovanom systéme má teleso A teplotu +40°C a teleso B +65°C. Tieto telesá sa dostali do vzájomného tepelného kontaktu. Po určitom čase nastala tepelná rovnováha. Ako sa v dôsledku toho zmenila teplota telesa B a celková vnútorná energia telies A a B?

Pre každé množstvo určite zodpovedajúci charakter zmeny:

  1. Zvýšená;
  2. Poklesla;
  3. Nezmenilo sa.

Zapíšte si vybrané čísla pre každú fyzikálnu veličinu do tabuľky. Čísla v odpovedi sa môžu opakovať.

Riešenie. Ak v izolovanej sústave telies nedochádza k iným energetickým premenám ako výmene tepla, potom množstvo tepla, ktoré odovzdávajú telesá, ktorých vnútorná energia klesá, sa rovná množstvu tepla prijatého telesami, ktorých vnútorná energia sa zvyšuje. (Podľa zákona zachovania energie.) V tomto prípade sa celková vnútorná energia systému nemení. Problémy tohto typu sa riešia na základe rovnice tepelnej bilancie.

U = ∑ n U i = 0 (1);
i = 1

kde ∆ U- zmena vnútornej energie.

V našom prípade v dôsledku výmeny tepla klesá vnútorná energia telesa B, čím sa znižuje teplota tohto telesa. Vnútorná energia telesa A sa zvyšuje, keďže telo prijalo množstvo tepla z telesa B, jeho teplota sa zvýši. Celková vnútorná energia telies A a B sa nemení.

Odpoveď. 23.

Proton p, letiaci do medzery medzi pólmi elektromagnetu, má rýchlosť kolmú na vektor indukcie magnetického poľa, ako je znázornené na obrázku. Kde je Lorentzova sila pôsobiaca na protón nasmerovaná vzhľadom na kresbu (hore, smerom k pozorovateľovi, preč od pozorovateľa, dole, vľavo, vpravo)


Riešenie. Magnetické pole pôsobí na nabitú časticu Lorentzovou silou. Aby bolo možné určiť smer tejto sily, je dôležité pamätať na mnemotechnické pravidlo ľavej ruky, nezabudnite vziať do úvahy náboj častice. Štyri prsty ľavej ruky smerujeme pozdĺž rýchlostného vektora, pre kladne nabitú časticu by mal vektor vstúpiť kolmo do dlane, palec nastavený na 90° ukazuje smer Lorentzovej sily pôsobiacej na časticu. Výsledkom je, že vektor Lorentzovej sily smeruje preč od pozorovateľa vzhľadom na obrázok.

Odpoveď. od pozorovateľa.

Modul intenzity elektrického poľa v plochom vzduchovom kondenzátore s kapacitou 50 μF sa rovná 200 V/m. Vzdialenosť medzi doskami kondenzátora je 2 mm. Aký je náboj na kondenzátore? Svoju odpoveď napíšte v µC.

Riešenie. Preveďme všetky merné jednotky do sústavy SI. Kapacita C = 50 µF = 50 10 –6 F, vzdialenosť medzi doskami d= 2 · 10 –3 m Úloha hovorí o plochom vzduchovom kondenzátore – zariadení na uchovávanie elektrického náboja a energie elektrického poľa. Zo vzorca elektrickej kapacity

Kde d- vzdialenosť medzi doskami.

Vyjadrime napätie U=E d(4); Dosadíme (4) do (2) a vypočítame náboj kondenzátora.

q = C · Ed= 50 10 –6 200 0,002 = 20 uC

Venujte prosím pozornosť jednotkám, v ktorých je potrebné napísať odpoveď. Dostali sme ho v coulombách, ale uvádzame ho v µC.

Odpoveď. 20 uC.


Študent vykonal experiment s lomom svetla znázorneným na fotografii. Ako sa mení uhol lomu svetla šíriaceho sa v skle a index lomu skla so zväčšujúcim sa uhlom dopadu?

  1. Zvyšuje
  2. Znižuje sa
  3. nemení sa
  4. Zaznamenajte vybrané čísla pre každú odpoveď do tabuľky. Čísla v odpovedi sa môžu opakovať.

Riešenie. Pri problémoch tohto druhu si pamätáme, čo je to refrakcia. Ide o zmenu smeru šírenia vlny pri prechode z jedného prostredia do druhého. Je to spôsobené tým, že rýchlosti šírenia vĺn v týchto médiách sú rôzne. Keď sme zistili, do ktorého média sa svetlo šíri, napíšme zákon lomu v tvare

sinα = n 2 ,
sinβ n 1

Kde n 2 – absolútny index lomu skla, médium, kam ide svetlo; n 1 je absolútny index lomu prvého prostredia, z ktorého svetlo pochádza. Pre vzduch n 1 = 1. α je uhol dopadu lúča na povrch skleneného polvalca, β je uhol lomu lúča v skle. Okrem toho bude uhol lomu menší ako uhol dopadu, pretože sklo je opticky hustejšie médium - médium s vysokým indexom lomu. Rýchlosť šírenia svetla v skle je pomalšia. Upozorňujeme, že uhly meriame od kolmice obnovenej v bode dopadu lúča. Ak zväčšíte uhol dopadu, uhol lomu sa zvýši. To nezmení index lomu skla.

Odpoveď.

Medený mostík v určitom časovom bode t 0 = 0 sa začne pohybovať rýchlosťou 2 m/s po paralelných horizontálnych vodivých koľajniciach, na ktorých konce je pripojený 10 Ohmový odpor. Celý systém je vo vertikálnom rovnomernom magnetickom poli. Odpor prepojky a koľajníc je zanedbateľný, prepojka je vždy umiestnená kolmo na koľajnice. Tok Ф vektora magnetickej indukcie cez obvod tvorený prepojkou, koľajnicami a rezistorom sa v priebehu času mení t ako je znázornené na grafe.


Pomocou grafu vyberte dva správne výroky a uveďte ich počet vo svojej odpovedi.

  1. Kým t= 0,1 s zmena magnetického toku obvodom je 1 mWb.
  2. Indukčný prúd v prepojke v rozsahu od t= 0,1 s t= 0,3 s max.
  3. Modul indukčného emf vznikajúceho v obvode je 10 mV.
  4. Sila indukčného prúdu tečúceho v prepojke je 64 mA.
  5. Aby sa udržal pohyb prepojky, pôsobí na ňu sila, ktorej priemet na smer koľajníc je 0,2 N.

Riešenie. Pomocou grafu závislosti toku vektora magnetickej indukcie obvodom od času určíme oblasti, kde sa mení tok F a kde je zmena toku nulová. To nám umožní určiť časové intervaly, počas ktorých sa v obvode objaví indukovaný prúd. Pravdivé tvrdenie:

1) V čase t= 0,1 s zmena magnetického toku obvodom sa rovná 1 mWb ∆Ф = (1 – 0) 10 –3 Wb; Modul indukčného emf vznikajúceho v obvode je určený pomocou zákona EMR

Odpoveď. 13.


Pomocou grafu závislosti prúdu od času v elektrickom obvode, ktorého indukčnosť je 1 mH, určte samoindukčný emf modul v časovom intervale od 5 do 10 s. Svoju odpoveď napíšte v µV.

Riešenie. Prepočítajme všetky veličiny do sústavy SI, t.j. prevedieme indukčnosť 1 mH na H, dostaneme 10 –3 H. Taktiež prevedieme prúd zobrazený na obrázku v mA na A vynásobením 10 –3.

Vzorec pre samoindukciu emf má tvar

v tomto prípade je časový interval daný podľa podmienok problému

t= 10 s – 5 s = 5 s

sekúnd a pomocou grafu určíme interval zmeny prúdu počas tejto doby:

ja= 30 10 –3 – 20 10 –3 = 10 10 –3 = 10 –2 A.

Číselné hodnoty dosadíme do vzorca (2), dostaneme

| Ɛ | = 2 ·10 –6 V alebo 2 µV.

Odpoveď. 2.

Dve priehľadné planparalelné dosky sú tesne pritlačené k sebe. Na povrch prvej dosky dopadá lúč svetla zo vzduchu (pozri obrázok). Je známe, že index lomu hornej dosky sa rovná n 2 = 1,77. Vytvorte súlad medzi fyzikálnymi veličinami a ich významom. Pre každú pozíciu v prvom stĺpci vyberte zodpovedajúcu pozíciu z druhého stĺpca a zapíšte si vybrané čísla do tabuľky pod príslušné písmená.


Riešenie. Na vyriešenie problémov s lomom svetla na rozhraní medzi dvoma médiami, najmä problémov s prechodom svetla cez planparalelné dosky, možno odporučiť nasledujúci postup riešenia: urobiť nákres s vyznačením dráhy lúčov prichádzajúcich z jedného média do ďalší; V bode dopadu lúča na rozhraní medzi dvoma médiami nakreslite normálu k povrchu, označte uhly dopadu a lomu. Venujte zvláštnu pozornosť optickej hustote uvažovaného média a pamätajte, že keď svetelný lúč prechádza z opticky menej hustého média do opticky hustejšieho média, uhol lomu bude menší ako uhol dopadu. Obrázok ukazuje uhol medzi dopadajúcim lúčom a povrchom, ale potrebujeme uhol dopadu. Pamätajte, že uhly sa určujú z kolmice obnovenej v bode nárazu. Určíme, že uhol dopadu lúča na povrch je 90° – 40° = 50°, index lomu n 2 = 1,77; n 1 = 1 (vzduch).

Zapíšme si zákon lomu

sinβ = hriech50 = 0,4327 ≈ 0,433
1,77

Nakreslíme si približnú dráhu lúča cez dosky. Pre hranice 2–3 a 3–1 používame vzorec (1). Ako odpoveď dostávame

A) Sínus uhla dopadu lúča na hranici 2–3 medzi doskami je 2) ≈ 0,433;

B) Uhol lomu lúča pri prekročení hranice 3–1 (v radiánoch) je 4) ≈ 0,873.

Odpoveď. 24.

Určte, koľko α - častíc a koľko protónov vzniká ako výsledok termonukleárnej fúznej reakcie

+ → X+ r;

Riešenie. Pri všetkých jadrových reakciách sa dodržiavajú zákony zachovania elektrického náboja a počtu nukleónov. Označme x počet častíc alfa, y počet protónov. Zostavme si rovnice

+ → x + y;

riešenie systému, ktorý máme X = 1; r = 2

Odpoveď. 1 – α-častica; 2 – protóny.

Modul hybnosti prvého fotónu je 1,32 · 10 –28 kg m/s, čo je o 9,48 · 10 –28 kg m/s menej ako modul hybnosti druhého fotónu. Nájdite pomer energie E 2 / E 1 druhého a prvého fotónu. Svoju odpoveď zaokrúhlite na desatinu.

Riešenie. Hybnosť druhého fotónu je väčšia ako hybnosť prvého fotónu podľa podmienky, čo znamená, že môže byť reprezentovaná p 2 = p 1 + Δ p(1). Energiu fotónu možno vyjadriť pomocou hybnosti fotónu pomocou nasledujúcich rovníc. Toto E = mc 2 (1) a p = mc(2), teda

E = pc (3),

Kde E- fotónová energia, p– hybnosť fotónu, m – hmotnosť fotónu, c= 3 · 10 8 m/s – rýchlosť svetla. Ak vezmeme do úvahy vzorec (3), máme:

E 2 = p 2 = 8,18;
E 1 p 1

Odpoveď zaokrúhlime na desatiny a dostaneme 8,2.

Odpoveď. 8,2.

V jadre atómu došlo k rádioaktívnemu rozpadu pozitrónu β. Ako sa v dôsledku toho zmenil elektrický náboj jadra a počet neutrónov v ňom?

Pre každé množstvo určite zodpovedajúci charakter zmeny:

  1. Zvýšená;
  2. Poklesla;
  3. Nezmenilo sa.

Zapíšte si vybrané čísla pre každú fyzikálnu veličinu do tabuľky. Čísla v odpovedi sa môžu opakovať.

Riešenie. Pozitrón β - rozpad v atómovom jadre nastáva, keď sa protón premení na neutrón s emisiou pozitrónu. V dôsledku toho sa počet neutrónov v jadre zvýši o jeden, elektrický náboj sa zníži o jeden a hmotnostné číslo jadra zostane nezmenené. Transformačná reakcia prvku je teda nasledovná:

Odpoveď. 21.

V laboratóriu sa uskutočnilo päť experimentov na pozorovanie difrakcie pomocou rôznych difrakčných mriežok. Každá z mriežok bola osvetlená paralelnými lúčmi monochromatického svetla so špecifickou vlnovou dĺžkou. Vo všetkých prípadoch svetlo dopadalo kolmo na mriežku. V dvoch z týchto experimentov sa pozoroval rovnaký počet hlavných difrakčných maxím. Najprv uveďte číslo experimentu, v ktorom bola použitá difrakčná mriežka s kratšou periódou, a potom číslo experimentu, v ktorom bola použitá difrakčná mriežka s väčšou periódou.

Riešenie. Difrakcia svetla je jav svetelného lúča do oblasti geometrického tieňa. Difrakciu možno pozorovať, keď sa na dráhe svetelnej vlny nachádzajú nepriehľadné oblasti alebo diery vo veľkých prekážkach, ktoré sú nepriehľadné pre svetlo, a veľkosti týchto oblastí alebo dier sú úmerné vlnovej dĺžke. Jedným z najdôležitejších difrakčných zariadení je difrakčná mriežka. Uhlové smery k maximám difrakčného obrazca sú určené rovnicou

d sinφ = kλ (1),

Kde d– perióda difrakčnej mriežky, φ – uhol medzi normálou k mriežke a smerom k jednému z maxím difrakčného obrazca, λ – vlnová dĺžka svetla, k– celé číslo nazývané rádovo difrakčné maximum. Vyjadrime sa z rovnice (1)

Pri výbere párov podľa experimentálnych podmienok vyberieme najskôr 4, kde bola použitá difrakčná mriežka s kratšou periódou a potom číslo experimentu, v ktorom bola použitá difrakčná mriežka s väčšou periódou - to je 2.

Odpoveď. 42.

Prúd preteká cez drôtový odpor. Rezistor bol nahradený iným, s drôtom z rovnakého kovu a rovnakej dĺžky, ale s polovičným prierezom a pretekal ním polovičný prúd. Ako sa zmení napätie na rezistore a jeho odpor?

Pre každé množstvo určite zodpovedajúci charakter zmeny:

  1. Sa zvýši;
  2. Zníži sa;
  3. nezmení sa.

Zapíšte si vybrané čísla pre každú fyzikálnu veličinu do tabuľky. Čísla v odpovedi sa môžu opakovať.

Riešenie. Je dôležité si uvedomiť, od akých hodnôt závisí odpor vodiča. Vzorec na výpočet odporu je

Ohmov zákon pre úsek obvodu zo vzorca (2) vyjadrujeme napätie

U = Ja R (3).

Podľa podmienok problému je druhý rezistor vyrobený z drôtu z rovnakého materiálu, rovnakej dĺžky, ale inej plochy prierezu. Rozloha je dvakrát menšia. Dosadením do (1) zistíme, že odpor sa zvýši 2-krát a prúd sa zníži 2-krát, preto sa napätie nemení.

Odpoveď. 13.

Doba kmitania matematického kyvadla na povrchu Zeme je 1,2-krát väčšia ako doba jeho kmitania na určitej planéte. Aká je veľkosť zrýchlenia spôsobeného gravitáciou na tejto planéte? Vplyv atmosféry je v oboch prípadoch zanedbateľný.

Riešenie. Matematické kyvadlo je systém pozostávajúci zo závitu, ktorého rozmery sú oveľa väčšie ako rozmery gule a samotnej gule. Ťažkosti môžu nastať, ak sa zabudne na Thomsonov vzorec pre periódu kmitania matematického kyvadla.

T= 2π (1);

l– dĺžka matematického kyvadla; g- gravitačné zrýchlenie.

Podľa podmienok

Vyjadrime sa z (3) g n = 14,4 m/s 2. Treba poznamenať, že gravitačné zrýchlenie závisí od hmotnosti planéty a polomeru

Odpoveď. 14,4 m/s 2.

V rovnomernom magnetickom poli s indukciou je umiestnený priamy vodič s dĺžkou 1 m, ktorým prechádza prúd 3 A IN= 0,4 Tesla pod uhlom 30° k vektoru. Aká je veľkosť sily pôsobiacej na vodič z magnetického poľa?

Riešenie. Ak umiestnite vodič s prúdom do magnetického poľa, pole na vodiči s prúdom bude pôsobiť ampérovou silou. Zapíšme si vzorec pre Ampérový silový modul

F A = Ja LB sinα;

F A = 0,6 N

Odpoveď. F A = 0,6 N.

Energia magnetického poľa uložená v cievke, keď ňou prechádza jednosmerný prúd, sa rovná 120 J. Koľkokrát sa musí zvýšiť sila prúdu pretekajúceho vinutím cievky, aby sa zvýšila energia magnetického poľa v nej uložená? od 5760 J.

Riešenie. Energia magnetického poľa cievky sa vypočíta podľa vzorca

W m = LI 2 (1);
2

Podľa podmienok W 1 = 120 J, potom W 2 = 120 + 5760 = 5880 J.

ja 1 2 = 2W 1 ; ja 2 2 = 2W 2 ;
L L

Potom aktuálny pomer

ja 2 2 = 49; ja 2 = 7
ja 1 2 ja 1

Odpoveď. Sila prúdu sa musí zvýšiť 7-krát. Do formulára odpovede zadáte iba číslo 7.

Elektrický obvod pozostáva z dvoch žiaroviek, dvoch diód a závitu drôtu zapojených tak, ako je znázornené na obrázku. (Dióda umožňuje prúdenie prúdu iba v jednom smere, ako je znázornené v hornej časti obrázka.) Ktorá zo žiaroviek sa rozsvieti, ak sa severný pól magnetu priblíži k cievke? Vysvetlite svoju odpoveď uvedením toho, aké javy a vzorce ste použili vo svojom vysvetlení.


Riešenie. Magnetické indukčné čiary vychádzajú zo severného pólu magnetu a rozchádzajú sa. Keď sa magnet približuje, magnetický tok cez cievku drôtu sa zvyšuje. V súlade s Lenzovým pravidlom musí magnetické pole vytvorené indukčným prúdom cievky smerovať doprava. Podľa pravidla gimlet by mal prúd prúdiť v smere hodinových ručičiek (pri pohľade zľava). Dióda v druhom obvode svietidla prechádza týmto smerom. To znamená, že sa rozsvieti druhá kontrolka.

Odpoveď. Rozsvieti sa druhá kontrolka.

Dĺžka hliníkových lúčov L= 25 cm a plocha prierezu S= 0,1 cm 2 zavesené na nite za horný koniec. Spodný koniec spočíva na vodorovnom dne nádoby, do ktorej sa nalieva voda. Dĺžka ponorenej časti lúča l= 10 cm Nájdite silu F, s ktorou pletacia ihla tlačí na dno nádoby, ak je známe, že niť je umiestnená vertikálne. Hustota hliníka ρ a = 2,7 g/cm 3, hustota vody ρ b = 1,0 g/cm 3. Zrýchlenie gravitácie g= 10 m/s 2

Riešenie. Urobme si vysvetľujúci nákres.


– napínacia sila závitu;

– Reakčná sila dna nádoby;

a je Archimedova sila pôsobiaca iba na ponorenú časť tela a pôsobiaca na stred ponorenej časti lúča;

– gravitačná sila pôsobiaca na lúč zo Zeme a pôsobiaca na stred celého lúča.

Podľa definície, hmotnosť hovoril m a Archimedov modul sily sú vyjadrené takto: m = SL p a (1);

F a = Slρ v g (2)

Uvažujme momenty síl vo vzťahu k bodu zavesenia lúča.

M(T) = 0 – moment ťahovej sily; (3)

M(N)= NL cosα je moment sily reakcie podpory; (4)

Berúc do úvahy znamenia momentov, napíšeme rovnicu

NL cosα + Slρ v g (L l )cosα = SLρ a g L cosα (7)
2 2

berúc do úvahy, že podľa tretieho Newtonovho zákona sa reakčná sila dna nádoby rovná sile F d, ktorým pletacia ihlica tlačí na dno nádoby píšeme N = F d a z rovnice (7) vyjadríme túto silu:

Fd = [ 1 Lρ a– (1 – l )lρ v ] Sg (8).
2 2L

Nahraďte číselné údaje a získajte to

F d = 0,025 N.

Odpoveď. F d = 0,025 N.

Valec obsahujúci m 1 = 1 kg dusíka, počas skúšky pevnosti explodoval pri teplote t 1 = 327 °C. Aká hmotnosť vodíka m 2 možno v takom valci skladovať pri teplote t 2 = 27 °C s päťnásobnou bezpečnostnou rezervou? Molárna hmotnosť dusíka M 1 = 28 g/mol, vodík M 2 = 2 g/mol.

Riešenie. Napíšme Mendelejevovu-Clapeyronovu stavovú rovnicu ideálneho plynu pre dusík

Kde V- objem valca, T 1 = t 1 + 273 °C. Podľa podmienok môže byť vodík skladovaný pod tlakom p 2 = p 1/5; (3) Vzhľadom na to

hmotnosť vodíka môžeme vyjadriť priamou prácou s rovnicami (2), (3), (4). Konečný vzorec vyzerá takto:

m 2 = m 1 M 2 T 1 (5).
5 M 1 T 2

Po dosadení číselných údajov m 2 = 28 g.

Odpoveď. m 2 = 28 g.

V ideálnom oscilačnom obvode je amplitúda kolísania prúdu v induktore ja m= 5 mA a amplitúda napätia na kondenzátore Hm= 2,0 V. V čase t napätie na kondenzátore je 1,2 V. Nájdite v tomto momente prúd v cievke.

Riešenie. V ideálnom oscilačnom obvode je oscilačná energia zachovaná. Pre okamih t má zákon zachovania energie tvar

C U 2 + L ja 2 = L ja m 2 (1)
2 2 2

Pre hodnoty amplitúdy (maximálne) píšeme

a z rovnice (2) vyjadríme

C = ja m 2 (4).
L Hm 2

Dosaďte (4) do (3). V dôsledku toho dostaneme:

ja = ja m (5)

Teda prúd v cievke v okamihu času t rovná

ja= 4,0 mA.

Odpoveď. ja= 4,0 mA.

Na dne nádrže hlbokej 2 m je zrkadlo. Lúč svetla prechádzajúci vodou sa odráža od zrkadla a vychádza z vody. Index lomu vody je 1,33. Nájdite vzdialenosť medzi bodom vstupu lúča do vody a bodom výstupu lúča z vody, ak je uhol dopadu lúča 30°

Riešenie. Urobme si vysvetľujúci nákres


α je uhol dopadu lúča;

β je uhol lomu lúča vo vode;

AC je vzdialenosť medzi bodom vstupu lúča do vody a bodom výstupu lúča z vody.

Podľa zákona lomu svetla

sinβ = sinα (3)
n 2

Zoberme si pravouhlý ΔADB. V tom AD = h, potom DB = AD

tgβ = h tgβ = h sinα = h sinβ = h sinα (4)
cosβ

Dostaneme nasledujúci výraz:

AC = 2 DB = 2 h sinα (5)

Dosaďte číselné hodnoty do výsledného vzorca (5)

Odpoveď. 1,63 m.

V rámci prípravy na jednotnú štátnu skúšku vás pozývame, aby ste sa s ňou oboznámili pracovný program z fyziky pre ročníky 7–9 do línie UMK Peryshkina A.V. A pokročilý pracovný program pre ročníky 10-11 pre učebné materiály Myakisheva G.Ya. Programy sú k dispozícii na prezeranie a bezplatné stiahnutie všetkým registrovaným používateľom.