Riešenie sústav lineárnych algebraických rovníc, metódy riešenia, príklady. Nájdite všeobecné riešenie systému a fsr

Gaussova metóda má množstvo nevýhod: nie je možné zistiť, či je systém konzistentný alebo nie, kým sa nevykonajú všetky potrebné transformácie v Gaussovej metóde; Gaussova metóda nie je vhodná pre systémy s písmenovými koeficientmi.

Zvážte iné metódy riešenia sústav lineárnych rovníc. Tieto metódy využívajú koncepciu hodnosti matice a redukujú riešenie akéhokoľvek kĺbového systému na riešenie systému, na ktorý sa vzťahuje Cramerovo pravidlo.

Príklad 1 Nájdite všeobecné riešenie nasledujúcej sústavy lineárnych rovníc pomocou základnej sústavy riešení redukovanej homogénnej sústavy a partikulárneho riešenia nehomogénnej sústavy.

1. Vyrobíme maticu A a rozšírená matica systému (1)

2. Preskúmajte systém (1) kvôli kompatibilite. Aby sme to urobili, nájdeme hodnosti matríc A a https://pandia.ru/text/78/176/images/image006_90.gif" width="17" height="26 src=">). Ak sa ukáže, že , potom systém (1) nezlučiteľné. Ak to dostaneme , potom je tento systém konzistentný a budeme ho riešiť. (Štúdia konzistencie je založená na Kronecker-Capelliho vete).

a. nachádzame rA.

Nájsť rA, budeme postupne uvažovať o nenulových maloletých prvého, druhého atď. rádu matice A a maloletí okolo nich.

M1=1≠0 (1 je prevzaté z ľavého horného rohu matice ALE).

Hraničný M1 druhý riadok a druhý stĺpec tejto matice. . Pokračujeme k hraniciam M1 druhý riadok a tretí stĺpec..gif" width="37" height="20 src=">. Teraz ohraničíme nenulovú vedľajšiu М2′ druhá objednávka.

Máme: (pretože prvé dva stĺpce sú rovnaké)

(pretože druhý a tretí riadok sú proporcionálne).

To vidíme rA=2 a je základom minor matice A.

b. nachádzame .

Dostatočne základné drobné М2′ matice A hranica so stĺpcom voľných členov a všetkými riadkami (máme len posledný riadok).

. Z toho vyplýva, že М3′′ zostáva základom minor matice https://pandia.ru/text/78/176/images/image019_33.gif" width="168 height=75" height="75"> (2)

Pretože М2′- menší základ matice A systémov (2) , potom je tento systém ekvivalentný systému (3) , pozostávajúce z prvých dvoch rovníc sústavy (2) (pre М2′ je v prvých dvoch riadkoch matice A).

(3)

Keďže základná menšia je https://pandia.ru/text/78/176/images/image021_29.gif" width="153" height="51"> (4)

V tomto systéme sú dve voľné neznáme ( x2 a x4 ). Preto FSR systémov (4) pozostáva z dvoch riešení. Aby sme ich našli, priraďujeme k nim voľné neznáme (4) hodnoty ako prvé x2 = 1 , x4 = 0 , a potom - x2 = 0 , x4=1 .

O x2 = 1 , x4 = 0 dostaneme:

.

Tento systém už má jediná vec riešenie (možno ho nájsť Cramerovým pravidlom alebo akoukoľvek inou metódou). Odčítaním prvej rovnice od druhej rovnice dostaneme:

Jej rozhodnutie bude x1= -1 , x3 = 0 . Vzhľadom na hodnoty x2 a x4 , ktoré sme uviedli, získame prvé zásadné riešenie systému (2) : .

Teraz vložíme (4) x2 = 0 , x4=1 . Dostaneme:

.

Tento systém riešime pomocou Cramerovej vety:

.

Získame druhé základné riešenie systému (2) : .

Riešenia β1 , β2 a make up FSR systémov (2) . Potom bude jeho všeobecné riešenie

γ= C1 β1+С2β2=С1(-1, 1, 0, 0)+С2(5, 0, 4, 1)=(-С1+5С2, С1, 4С2, С2)

Tu C1 , C2 sú ľubovoľné konštanty.

4. Nájdite jednu súkromné Riešenie heterogénny systém(1) . Ako v odseku 3 , namiesto systému (1) zvážiť ekvivalentný systém (5) , pozostávajúce z prvých dvoch rovníc sústavy (1) .

(5)

Voľné neznáme prenášame na pravú stranu x2 a x4.

(6)

Dajme zadarmo neznáme x2 a x4 ľubovoľné hodnoty, napr. x2=2 , x4=1 a zapojte ich do (6) . Zoberme si systém

Tento systém má jedinečné riešenie (pretože jeho determinant М2′0). Jeho vyriešením (pomocou Cramerovej vety alebo Gaussovej metódy) dostaneme x1=3 , x3=3 . Vzhľadom na hodnoty voľných neznámych x2 a x4 , dostaneme konkrétne riešenie nehomogénneho systému(1)a1=(3,2,3,1).

5. Teraz zostáva písať všeobecné riešenie α nehomogénnej sústavy(1) : rovná sa súčtu súkromné ​​rozhodnutie tento systém a všeobecné riešenie jeho redukovaného homogénneho systému (2) :

α=α1+γ=(3, 2, 3, 1)+(‑С1+5С2, С1, 4С2, С2).

To znamená: (7)

6. Vyšetrenie. Ak chcete skontrolovať, či ste systém vyriešili správne (1) , potrebujeme všeobecné riešenie (7) nahradiť v (1) . Ak sa každá rovnica stane identitou ( C1 a C2 by mala byť zničená), potom sa riešenie nájde správne.

Nahradíme (7) napríklad len v poslednej rovnici sústavy (1) (X1 + X2 + X3 ‑9 X4 =‑1) .

Získame: (3–С1+5С2)+(2+С1)+(3+4С2)–9(1+С2)=–1

(С1–С1)+(5С2+4С2–9С2)+(3+2+3–9)=–1

Kde -1=-1. Máme identitu. Robíme to so všetkými ostatnými rovnicami systému (1) .

Komentujte. Overovanie je zvyčajne dosť ťažkopádne. Môžeme odporučiť nasledovné „čiastočné overenie“: v celkovom riešení systému (1) priradiť nejaké hodnoty ľubovoľným konštantám a výsledné konkrétne riešenie dosadiť len do vyradených rovníc (t.j. do tých rovníc z (1) ktoré nie sú zahrnuté (5) ). Ak získate identity, potom pravdepodobne, riešenie systému (1) nájdené správne (ale takáto kontrola nedáva úplnú záruku správnosti!). Napríklad, ak v (7) dať C2=- 1 , C1=1, potom dostaneme: x1=-3, x2=3, x3=-1, x4=0. Dosadením do poslednej rovnice systému (1) máme: - 3+3 - 1 - 9∙0= - 1 , t.j. –1=–1. Máme identitu.

Príklad 2 Nájdite všeobecné riešenie sústavy lineárnych rovníc (1) , vyjadrujúce hlavné neznáme z hľadiska voľných.

Riešenie. Ako v príklad 1, skladať matice A a https://pandia.ru/text/78/176/images/image010_57.gif" width="156" height="50"> týchto matíc. Teraz ponecháme len tie rovnice systému (1) , ktorých koeficienty sú zahrnuté v tejto základnej moll (t. j. máme prvé dve rovnice) a uvažujeme systém z nich pozostávajúci, ktorý je ekvivalentný systému (1).

Prenesme voľné neznáme na pravú stranu týchto rovníc.

systém (9) riešime Gaussovou metódou, pričom správne časti považujeme za voľné členy.

https://pandia.ru/text/78/176/images/image035_21.gif" width="202 height=106" height="106">

Možnosť 2.

https://pandia.ru/text/78/176/images/image039_16.gif" width="192" height="106 src=">

Možnosť 4.

https://pandia.ru/text/78/176/images/image042_14.gif" width="172" height="80">

Možnosť 5.

https://pandia.ru/text/78/176/images/image044_12.gif" width="179 height=106" height="106">

Možnosť 6.

https://pandia.ru/text/78/176/images/image046_11.gif" width="195" height="106">

Homogénne sústavy lineárnych algebraických rovníc

V rámci lekcií Gaussova metóda a Nekompatibilné systémy/systémy so spoločným riešením zvažovali sme nehomogénne sústavy lineárnych rovníc, kde voľný člen(ktorý je zvyčajne vpravo) aspoň jeden rovníc bola iná ako nula.
A teraz, po dobrej rozcvičke s maticová hodnosť, budeme pokračovať v leštení techniky elementárne transformácie na homogénna sústava lineárnych rovníc.
Materiál môže podľa prvých odstavcov pôsobiť nudne a obyčajne, no tento dojem klame. Okrem ďalšieho vývoja techník bude veľa nových informácií, preto sa snažte nezanedbávať príklady v tomto článku.

Čo je homogénna sústava lineárnych rovníc?

Odpoveď sa ponúka sama. Sústava lineárnych rovníc je homogénna, ak je voľný člen všetci systémová rovnica je nulová. Napríklad:

To je úplne jasné homogénny systém je vždy konzistentný, teda vždy má riešenie. A v prvom rade tzv triviálne Riešenie . Triviálne, pre tých, ktorí vôbec nerozumejú významu prídavného mena, znamená bespontovoe. Nie akademicky, samozrejme, ale zrozumiteľne =) ... Načo sa motať okolo, poďme zistiť, či má tento systém aj iné riešenia:

Príklad 1

Riešenie: na riešenie homogénnej sústavy je potrebné napísať systémová matica a pomocou elementárnych transformácií ho priviesť do stupňovitej podoby. Všimnite si, že tu nie je potrebné zapisovať zvislý pruh a nulový stĺpec voľných členov - koniec koncov, bez ohľadu na to, čo robíte s nulami, zostanú nulové:

(1) Prvý riadok bol pridaný k druhému riadku, vynásobený -2. Prvý riadok bol pridaný k tretiemu riadku, vynásobený -3.

(2) Druhý riadok bol pridaný k tretiemu riadku, vynásobený -1.

Deliť tretí riadok 3 nedáva veľký zmysel.

V dôsledku elementárnych transformácií sa získa ekvivalentný homogénny systém a použitím spätného pohybu Gaussovej metódy je ľahké overiť, že riešenie je jedinečné.

Odpoveď:

Sformulujme jasné kritérium: homogénna sústava lineárnych rovníc má len triviálne riešenie, ak systémová matica hodnosť(v tomto prípade 3) sa rovná počtu premenných (v tomto prípade 3 ks).

Zahrievame a ladíme naše rádio na vlnu elementárnych premien:

Príklad 2

Vyriešte homogénnu sústavu lineárnych rovníc

Z článku Ako zistiť hodnosť matice? pripomíname racionálnu metódu náhodného znižovania čísel matice. V opačnom prípade budete musieť poraziť veľké a často hryzavé ryby. Príklad zadania na konci hodiny.

Nuly sú dobré a pohodlné, ale v praxi je oveľa bežnejší prípad, keď sú riadky matice systému lineárne závislé. A potom je nevyhnutný vzhľad všeobecného riešenia:

Príklad 3

Vyriešte homogénnu sústavu lineárnych rovníc

Riešenie: napíšeme maticu sústavy a pomocou elementárnych transformácií ju privedieme do stupňovitého tvaru. Prvá akcia je zameraná nielen na získanie jedinej hodnoty, ale aj na zníženie čísel v prvom stĺpci:

(1) Tretí riadok bol pridaný k prvému riadku, vynásobený -1. Tretí riadok bol pridaný k druhému riadku, vynásobený -2. Vľavo hore som dostal jednotku s „mínusom“, čo je často oveľa pohodlnejšie pre ďalšie premeny.

(2) Prvé dva riadky sú rovnaké, jeden z nich bol odstránený. Úprimne povedané, neupravil som rozhodnutie - stalo sa. Ak vykonávate transformácie v šablóne, potom lineárna závislosť riadky sa objavia o niečo neskôr.

(3) K tretiemu riadku pridajte druhý riadok vynásobený 3.

(4) Znamienko prvého riadku bolo zmenené.

V dôsledku elementárnych transformácií sa získa ekvivalentný systém:

Algoritmus funguje presne rovnako ako pre heterogénne systémy. Premenné „sedí na schodoch“ sú hlavné, premenná, ktorá nedostala „kroky“, je voľná.

Základné premenné vyjadrujeme pomocou voľnej premennej:

Odpoveď: spoločné rozhodnutie:

Triviálne riešenie je zahrnuté vo všeobecnom vzorci a nie je potrebné ho písať samostatne.

Overenie sa tiež vykonáva podľa obvyklej schémy: výsledné všeobecné riešenie sa musí dosadiť na ľavú stranu každej rovnice systému a pre všetky substitúcie sa získa legitímna nula.

S tým by sa dalo pokojne skončiť, ale riešenie homogénnej sústavy rovníc je často potrebné znázorniť vo vektorovej forme používaním základný rozhodovací systém. Prosím, dočasne zabudnite analytická geometria, keďže teraz budeme hovoriť o vektoroch vo všeobecnom algebraickom zmysle, čo som mierne otvoril v článku o maticová hodnosť. Terminológiu nie je potrebné tieňovať, všetko je celkom jednoduché.

Homogénny systém lineárnych rovníc nad poľom

DEFINÍCIA. Fundamentálna sústava riešení sústavy rovníc (1) je neprázdna lineárne nezávislá sústava jej riešení, ktorej lineárne rozpätie sa zhoduje s množinou všetkých riešení sústavy (1).

Všimnite si, že homogénny systém lineárnych rovníc, ktorý má iba nulové riešenie, nemá fundamentálny systém riešení.

NÁVRH 3.11. Akékoľvek dva základné systémy riešení homogénneho systému lineárnych rovníc pozostávajú z rovnakého počtu riešení.

Dôkaz. V skutočnosti sú akékoľvek dva základné systémy riešení homogénneho systému rovníc (1) ekvivalentné a lineárne nezávislé. Preto podľa výroku 1.12 sú ich pozície rovnaké. Preto sa počet riešení zahrnutých v jednom základnom systéme rovná počtu riešení zahrnutých v akomkoľvek inom základnom systéme riešení.

Ak je hlavná matica A homogénneho systému rovníc (1) nula, potom akýkoľvek vektor z je riešením pre systém (1); v tomto prípade je základný systém riešení akýkoľvek súbor lineárne nezávislých vektorov. Ak je poradie stĺpca matice A , potom systém (1) má iba jedno riešenie - nulu; preto v tomto prípade sústava rovníc (1) nemá fundamentálnu sústavu riešení.

TEOREMA 3.12. Ak je poradie hlavnej matice homogénneho systému lineárnych rovníc (1) menšie ako počet premenných, potom systém (1) má základný systém riešení pozostávajúci z riešení.

Dôkaz. Ak sa hodnosť hlavnej matice A homogénneho systému (1) rovná nule alebo , potom sa vyššie ukázalo, že veta je pravdivá. Preto sa ďalej predpokladá, že Za predpokladu , budeme predpokladať, že prvé stĺpce matice A sú lineárne nezávislé. V tomto prípade je matica A po riadkoch ekvivalentná redukovanej stupňovej matici a systém (1) je ekvivalentný nasledujúcemu redukovanému stupňovitému systému rovníc:

Je ľahké skontrolovať, či ľubovoľný systém hodnôt voľných premenných systému (2) zodpovedá jednému a iba jednému riešeniu systému (2), a teda systému (1). Predovšetkým iba nulové riešenie sústavy (2) a sústavy (1) zodpovedá sústave nulových hodnôt.

V systéme (2) priradíme jednej z voľných premenných hodnotu rovnajúcu sa 1 a ostatným premenným nulové hodnoty. Výsledkom je, že dostaneme riešenia sústavy rovníc (2), ktoré zapíšeme ako riadky nasledujúcej matice C:

Riadkový systém tejto matice je lineárne nezávislý. Vskutku, pre všetky skaláre z rovnosti

nasleduje rovnosť

a teda rovnosť

Dokážme, že lineárne rozpätie sústavy riadkov matice C sa zhoduje s množinou všetkých riešení sústavy (1).

Ľubovoľné riešenie systému (1). Potom vektor

je tiež riešením systému (1), a

Príklad 1. Nájdite všeobecné riešenie a nejaký základný systém riešení pre systém

Riešenie nájsť pomocou kalkulačky. Algoritmus riešenia je rovnaký ako pre sústavy lineárnych nehomogénnych rovníc.
Pri práci iba s riadkami nájdeme hodnosť matice, základnú minor; deklarujeme závislé a voľné neznáme a nájdeme všeobecné riešenie.


Prvý a druhý riadok sú proporcionálne, jeden z nich bude vymazaný:

.
Závislé premenné - x 2, x 3, x 5, voľné - x 1, x 4. Z prvej rovnice 10x 5 = 0 nájdeme x 5 = 0, teda
; .
Všeobecné riešenie vyzerá takto:

Nájdeme základný systém riešení, ktorý pozostáva z (n-r) riešení. V našom prípade n=5, r=3 teda fundamentálny systém riešení pozostáva z dvoch riešení a tieto riešenia musia byť lineárne nezávislé. Aby boli riadky lineárne nezávislé, je potrebné a postačujúce, aby sa poradie matice zloženej z prvkov riadkov rovnalo počtu riadkov, teda 2. Stačí dať voľným neznámym x 1 a x 4 hodnoty z riadkov determinantu druhého rádu, ktorý sa líši od nuly, a vypočítajte x 2 , x 3 , x 5 . Najjednoduchší nenulový determinant je .
Takže prvé riešenie je: , druhy - .
Tieto dve rozhodnutia tvoria základný systém rozhodovania. Všimnite si, že základný systém nie je jedinečný (iné determinanty ako nula môže byť zložených koľko chcete).

Príklad 2. Nájdite všeobecné riešenie a základný systém riešení systému
Riešenie.



,
z toho vyplýva, že poradie matice je 3 a rovná sa počtu neznámych. To znamená, že systém nemá žiadne voľné neznáme, a preto má unikátne riešenie – triviálne.

Cvičenie . Preskúmajte a riešte systém lineárnych rovníc.
Príklad 4

Cvičenie . Nájdite všeobecné a konkrétne riešenia pre každý systém.
Riešenie. Napíšeme hlavnú maticu systému:

5 -2 9 -4 -1
1 4 2 2 -5
6 2 11 -2 -6
x 1x2x 3x4x5

Maticu privedieme do trojuholníkového tvaru. Budeme pracovať len s riadkami, keďže vynásobiť riadok matice nenulovým číslom a pridať ho do iného riadku pre sústavu znamená vynásobiť rovnicu rovnakým číslom a pridať ju do inej rovnice, čím sa riešenie nezmení. systému.
Vynásobte 2. riadok (-5). Pridajme 2. riadok k 1.:
0 -22 -1 -14 24
1 4 2 2 -5
6 2 11 -2 -6

Vynásobte 2. riadok číslom (6). Vynásobte 3. riadok číslom (-1). Pridajme 3. riadok k 2.:
Nájdite hodnosť matice.
0 22 1 14 -24
6 2 11 -2 -6
x 1x2x 3x4x5

Zvýraznená vedľajšia hodnota má najvyššie poradie (z možných vedľajších hodnôt) a je nenulová (rovná sa súčinu prvkov na recipročnej diagonále), preto zazvonil(A) = 2.
Táto minorita je základná. Zahŕňa koeficienty pre neznáme x 1, x 2, čo znamená, že neznáme x 1, x 2 sú závislé (základné) a x 3, x 4, x 5 sú voľné.
Transformujeme maticu, pričom vľavo ponecháme iba základnú mollovú.
0 22 14 -1 -24
6 2 -2 -11 -6
x 1x2x4x 3x5

Systém s koeficientmi tejto matice je ekvivalentný pôvodnému systému a má tvar:
22x2 = 14x4 - x3 - 24x5
6x1 + 2x2 = - 2x4 - 11x3 - 6x5
Metódou eliminácie neznámych nájdeme netriviálne riešenie:
Získali sme vzťahy vyjadrujúce závislé premenné x 1 ,x 2 cez voľné x 3 ,x 4 ,x 5 , čiže sme našli spoločné rozhodnutie:
x2 = 0,64 x 4 – 0,0455 x 3 – 1,09 x 5
x 1 = - 0,55 x 4 - 1,82 x 3 - 0,64 x 5
Nájdeme základný systém riešení, ktorý pozostáva z (n-r) riešení.
V našom prípade n=5, r=2 teda fundamentálny systém riešení pozostáva z 3 riešení a tieto riešenia musia byť lineárne nezávislé.
Aby boli riadky lineárne nezávislé, je potrebné a postačujúce, aby sa poradie matice zloženej z prvkov riadkov rovnalo počtu riadkov, t.j. 3.
Stačí dať voľným neznámym hodnoty x 3 , x 4 , x 5 z riadkov determinantu 3. rádu odlišného od nuly a vypočítať x 1 , x 2 .
Najjednoduchším nenulovým determinantom je matica identity.
1 0 0
0 1 0
0 0 1

Úloha . Nájdite základnú množinu riešení homogénneho systému lineárnych rovníc.


Riešenie systémov lineárnych algebraických rovníc (SLAE) je nepochybne najdôležitejšou témou kurzu lineárnej algebry. Obrovské množstvo problémov zo všetkých odvetví matematiky sa redukuje na riešenie sústav lineárnych rovníc. Tieto faktory vysvetľujú dôvod vytvorenia tohto článku. Materiál článku je vybraný a štruktúrovaný tak, aby ste s jeho pomocou mohli

  • zvoliť optimálnu metódu riešenia vášho systému lineárnych algebraických rovníc,
  • študovať teóriu zvolenej metódy,
  • vyriešte svoj systém lineárnych rovníc po podrobnom zvážení riešení typických príkladov a problémov.

Stručný popis materiálu článku.

Najprv uvedieme všetky potrebné definície, pojmy a zavedieme nejaký zápis.

Ďalej uvažujeme o metódach riešenia systémov lineárnych algebraických rovníc, v ktorých sa počet rovníc rovná počtu neznámych premenných a ktoré majú jedinečné riešenie. Najprv sa zameriame na Cramerovu metódu, po druhé si ukážeme maticovú metódu riešenia takýchto sústav rovníc a po tretie rozoberieme Gaussovu metódu (metóda postupnej eliminácie neznámych premenných). Pre upevnenie teórie určite vyriešime niekoľko SLAE rôznymi spôsobmi.

Potom sa obraciame na riešenie systémov lineárnych algebraických rovníc všeobecného tvaru, v ktorých sa počet rovníc nezhoduje s počtom neznámych premenných alebo je hlavná matica systému degenerovaná. Formulujeme Kroneckerovu-Capelliho vetu, ktorá nám umožňuje stanoviť kompatibilitu SLAE. Analyzujme riešenie systémov (v prípade ich kompatibility) pomocou konceptu minoritnej bázy matice. Zvážime aj Gaussovu metódu a podrobne popíšeme riešenia príkladov.

Nezabudnite sa pozastaviť nad štruktúrou všeobecného riešenia homogénnych a nehomogénnych systémov lineárnych algebraických rovníc. Uveďme koncept základného systému riešení a ukážme, ako sa všeobecné riešenie SLAE zapisuje pomocou vektorov základného systému riešení. Pre lepšie pochopenie sa pozrime na niekoľko príkladov.

Na záver uvažujeme o sústavách rovníc, ktoré sú redukované na lineárne, ako aj o rôznych problémoch, pri riešení ktorých vznikajú SLAE.

Navigácia na stránke.

Definície, pojmy, označenia.

Budeme uvažovať sústavy p lineárnych algebraických rovníc s n neznámymi premennými (p sa môže rovnať n ) tvaru

Neznáme premenné, - koeficienty (niektoré reálne alebo komplexné čísla), - voľné členy (aj reálne alebo komplexné čísla).

Táto forma SLAE sa nazýva koordinovať.

AT matricový formulár tento systém rovníc má tvar,
kde - hlavná matica systému, - matica-stĺpec neznámych premenných, - matica-stĺpec voľných členov.

Ak do matice A pridáme ako (n + 1)-tý stĺpec maticu-stĺpec voľných členov, tak dostaneme tzv. rozšírená matrica sústavy lineárnych rovníc. Rozšírená matica je zvyčajne označená písmenom T a stĺpec voľných členov je oddelený zvislou čiarou od ostatných stĺpcov, tj.

Riešením sústavy lineárnych algebraických rovníc nazývaný súbor hodnôt neznámych premenných, ktorý mení všetky rovnice systému na identity. Maticová rovnica pre dané hodnoty neznámych premenných sa tiež zmení na identitu.

Ak má sústava rovníc aspoň jedno riešenie, potom sa nazýva kĺb.

Ak systém rovníc nemá riešenia, potom sa nazýva nezlučiteľné.

Ak má SLAE jedinečné riešenie, potom sa nazýva istý; ak existuje viac ako jedno riešenie, potom - neistý.

Ak sa voľné členy všetkých rovníc sústavy rovnajú nule , potom sa systém zavolá homogénne, inak - heterogénne.

Riešenie elementárnych sústav lineárnych algebraických rovníc.

Ak sa počet rovníc systému rovná počtu neznámych premenných a determinant jeho hlavnej matice sa nerovná nule, potom budeme takéto SLAE nazývať elementárne. Takéto sústavy rovníc majú jedinečné riešenie a v prípade homogénneho systému sú všetky neznáme premenné rovné nule.

Takéto SLAE sme začali študovať na strednej škole. Pri ich riešení sme zobrali jednu rovnicu, jednu neznámu premennú sme vyjadrili inými a dosadili ju do zvyšných rovníc, potom sme zobrali ďalšiu rovnicu, vyjadrili ďalšiu neznámu premennú a dosadili ju do iných rovníc atď. Alebo použili metódu sčítania, to znamená, že pridali dve alebo viac rovníc na odstránenie niektorých neznámych premenných. Nebudeme sa týmito metódami podrobne zaoberať, keďže ide v podstate o modifikácie Gaussovej metódy.

Hlavnými metódami riešenia elementárnych sústav lineárnych rovníc sú Cramerova metóda, maticová metóda a Gaussova metóda. Poďme si ich roztriediť.

Riešenie sústav lineárnych rovníc Cramerovou metódou.

Potrebujeme vyriešiť systém lineárnych algebraických rovníc

v ktorej sa počet rovníc rovná počtu neznámych premenných a determinant hlavnej matice systému je odlišný od nuly, teda .

Nech je determinant hlavnej matice systému a sú determinanty matíc, ktoré sa získajú z A nahradením 1., 2., …, n-tý stĺpec respektíve stĺpec voľných členov:

Pri takomto zápise sa neznáme premenné vypočítajú pomocou vzorcov Cramerovej metódy as . Takto sa nájde riešenie sústavy lineárnych algebraických rovníc Cramerovou metódou.

Príklad.

Cramerova metóda .

Riešenie.

Hlavná matica systému má tvar . Vypočítajte jej determinant (ak je to potrebné, pozrite si článok):

Keďže determinant hlavnej matice systému je odlišný od nuly, systém má jedinečné riešenie, ktoré možno nájsť Cramerovou metódou.

Zostavte a vypočítajte potrebné determinanty (determinant sa získa nahradením prvého stĺpca v matici A stĺpcom voľných členov, determinant - nahradením druhého stĺpca stĺpcom voľných členov, - nahradením tretieho stĺpca matice A stĺpcom voľných členov ):

Hľadanie neznámych premenných pomocou vzorcov :

odpoveď:

Hlavnou nevýhodou Cramerovej metódy (ak ju možno nazvať nevýhodou) je zložitosť výpočtu determinantov pri počte rovníc systému viac ako tri.

Riešenie sústav lineárnych algebraických rovníc maticovou metódou (pomocou inverznej matice).

Nech je sústava lineárnych algebraických rovníc uvedená v maticovom tvare , kde matica A má rozmer n x n a jej determinant je nenulový.

Keďže , potom je matica A invertibilná, to znamená, že existuje inverzná matica . Ak obe časti rovnosti vynásobíme vľavo, dostaneme vzorec na nájdenie stĺpcovej matice neznámych premenných. Tak sme dostali riešenie sústavy lineárnych algebraických rovníc maticovou metódou.

Príklad.

Vyriešte sústavu lineárnych rovníc maticová metóda.

Riešenie.

Prepíšme sústavu rovníc do maticového tvaru:

Pretože

potom možno SLAE vyriešiť maticovou metódou. Pomocou inverznej matice možno nájsť riešenie tohto systému ako .

Zostavme inverznú maticu pomocou matice algebraických doplnkov prvkov matice A (ak je to potrebné, pozri článok):

Zostáva vypočítať - maticu neznámych premenných vynásobením inverznej matice na maticovom stĺpci voľných členov (v prípade potreby pozri článok):

odpoveď:

alebo v inom zápise x 1 = 4, x 2 = 0, x 3 = -1.

Hlavným problémom pri hľadaní riešení sústav lineárnych algebraických rovníc maticovou metódou je zložitosť nájdenia inverznej matice, najmä pre štvorcové matice vyššieho ako tretieho rádu.

Riešenie sústav lineárnych rovníc Gaussovou metódou.

Predpokladajme, že potrebujeme nájsť riešenie systému n lineárnych rovníc s n neznámymi premennými
ktorého determinant hlavnej matice je odlišný od nuly.

Podstata Gaussovej metódy spočíva v postupnom vylúčení neznámych premenných: najprv sa x 1 vylúči zo všetkých rovníc systému počnúc druhou, potom sa x 2 vylúči zo všetkých rovníc počnúc treťou atď. x n zostáva v poslednej rovnici. Takýto proces transformácie rovníc systému na postupnú elimináciu neznámych premenných sa nazýva priama Gaussova metóda. Po dokončení dopredného chodu Gaussovej metódy sa z poslednej rovnice zistí x n, pomocou tejto hodnoty sa vypočíta x n-1 z predposlednej rovnice atď., Z prvej rovnice sa zistí x 1. Proces výpočtu neznámych premenných pri prechode od poslednej rovnice systému k prvej sa nazýva reverzná Gaussova metóda.

Stručne popíšme algoritmus na elimináciu neznámych premenných.

Budeme predpokladať, že , pretože to môžeme vždy dosiahnuť preskupením rovníc systému. Neznámu premennú x 1 vylúčime zo všetkých rovníc systému, počnúc druhou. Ak to chcete urobiť, pridajte prvú rovnicu vynásobenú k druhej rovnici systému, pridajte prvú vynásobenú k tretej rovnici a tak ďalej, pridajte prvú vynásobenú k n-tej rovnici. Systém rovníc po takýchto transformáciách nadobudne tvar

kde .

K rovnakému výsledku by sme dospeli, ak by sme x 1 vyjadrili pomocou iných neznámych premenných v prvej rovnici systému a výsledný výraz dosadili do všetkých ostatných rovníc. Premenná x 1 je teda vylúčená zo všetkých rovníc, počnúc druhou.

Ďalej postupujeme podobne, ale len s časťou výsledného systému, ktorý je vyznačený na obrázku

Ak to chcete urobiť, pridajte druhý vynásobený k tretej rovnici systému, pridajte druhý vynásobený k štvrtej rovnici a tak ďalej, pridajte druhý vynásobený k n-tej rovnici. Systém rovníc po takýchto transformáciách nadobudne tvar

kde . Premenná x 2 je teda vylúčená zo všetkých rovníc, počnúc treťou.

Ďalej pristúpime k eliminácii neznámeho x 3, pričom postupujeme podobne ako časť systému označená na obr.

Pokračujeme teda v priamom kurze Gaussovej metódy, kým systém nezíska formu

Od tohto momentu začíname opačný priebeh Gaussovej metódy: x n vypočítame z poslednej rovnice ako , pomocou získanej hodnoty x n zistíme x n-1 z predposlednej rovnice atď., Zistíme x 1 z prvej rovnica.

Príklad.

Vyriešte sústavu lineárnych rovníc Gaussova metóda.

Riešenie.

Vylúčme neznámu premennú x 1 z druhej a tretej rovnice sústavy. Aby sme to dosiahli, k obom častiam druhej a tretej rovnice pridáme zodpovedajúce časti prvej rovnice, vynásobené a takto:

Teraz vylúčime x 2 z tretej rovnice tak, že k jej ľavej a pravej časti pridáme ľavú a pravú časť druhej rovnice, vynásobené:

Týmto je dopredný kurz Gaussovej metódy dokončený, začíname opačný kurz.

Z poslednej rovnice výslednej sústavy rovníc zistíme x 3:

Z druhej rovnice dostaneme .

Z prvej rovnice nájdeme zostávajúcu neznámu premennú a tým sa dokončí opačný priebeh Gaussovej metódy.

odpoveď:

X 1 \u003d 4, x 2 \u003d 0, x 3 \u003d -1.

Riešenie sústav lineárnych algebraických rovníc všeobecného tvaru.

Vo všeobecnom prípade sa počet rovníc systému p nezhoduje s počtom neznámych premenných n:

Takéto SLAE nemusia mať žiadne riešenia, môžu mať jediné riešenie alebo mať nekonečne veľa riešení. Toto tvrdenie platí aj pre sústavy rovníc, ktorých hlavná matica je štvorcová a degenerovaná.

Kronecker-Capelliho veta.

Pred nájdením riešenia systému lineárnych rovníc je potrebné zistiť jeho kompatibilitu. Odpoveď na otázku, kedy je SLAE kompatibilný a kedy nekompatibilný, dáva Kroneckerova-Capelliho veta:
na konzistentnosť sústavy p rovníc s n neznámymi (p sa môže rovnať n ) je potrebné a postačujúce, aby sa hodnosť hlavnej matice systému rovnala hodnosti rozšírenej matice, teda Rank( A) = Poradie (T) .

Uvažujme ako príklad aplikáciu Kronecker-Cappelliho vety na určenie kompatibility sústavy lineárnych rovníc.

Príklad.

Zistite, či má sústava lineárnych rovníc riešenia.

Riešenie.

. Využime metódu ohraničenia maloletých. Minor druhého rádu odlišný od nuly. Poďme na neplnoletých tretieho rádu, ktorí to obklopujú:

Keďže všetky hraničiace maloleté osoby tretieho rádu sa rovnajú nule, poradie hlavnej matice je dve.

Na druhej strane, hodnosť rozšírenej matice sa rovná trom, keďže moll tretieho rádu

odlišný od nuly.

Touto cestou, Rang(A) , teda podľa Kronecker-Capelliho vety môžeme konštatovať, že pôvodný systém lineárnych rovníc je nekonzistentný.

odpoveď:

Neexistuje systém riešenia.

Takže sme sa naučili určiť nekonzistentnosť systému pomocou Kronecker-Capelliho vety.

Ako však nájsť riešenie SLAE, ak je preukázaná jeho kompatibilita?

Na to potrebujeme koncept minoritnej bázy matice a vetu o hodnosti matice.

Volá sa vedľajší najvyšší rád matice A okrem nuly základné.

Z definície základu minor vyplýva, že jeho poradie sa rovná hodnosti matice. Pre nenulovú maticu A môže byť niekoľko základných minorov, vždy je jeden základný minor.

Zoberme si napríklad maticu .

Všetky minority tretieho rádu tejto matice sú rovné nule, pretože prvky tretieho riadku tejto matice sú súčtom zodpovedajúcich prvkov prvého a druhého riadku.

Nasledujúce neplnoleté osoby druhého rádu sú základné, pretože sú nenulové

maloletí nie sú základné, pretože sa rovnajú nule.

Veta o poradí matice.

Ak je poradie matice rádu p x n r, potom všetky prvky riadkov (a stĺpcov) matice, ktoré netvoria zvolenú základňu minor, sú lineárne vyjadrené pomocou zodpovedajúcich prvkov riadkov (a stĺpcov). ), ktoré tvoria základ minor.

Čo nám dáva veta o poradí matice?

Ak sme Kroneckerovou-Capelliho vetou stanovili kompatibilitu systému, potom zvolíme ľubovoľnú základnú vedľajšiu hlavnú maticu systému (jej poradie je rovné r) a vylúčime zo systému všetky rovnice, ktoré tvoria zvolenú základnú moll. Takto získaný SLAE bude ekvivalentný pôvodnému, keďže vyradené rovnice sú stále nadbytočné (podľa vety o poradí matice sú lineárnou kombináciou zostávajúcich rovníc).

Výsledkom je, že po vyradení nadmerných rovníc systému sú možné dva prípady.

    Ak sa počet rovníc r vo výslednej sústave rovná počtu neznámych premenných, potom bude určitý a jediné riešenie možno nájsť Cramerovou metódou, maticovou metódou alebo Gaussovou metódou.

    Príklad.

    .

    Riešenie.

    Hodnosť hlavnej matice systému sa rovná dvom, keďže moll druhého rádu odlišný od nuly. Rozšírená matica hodnosť sa tiež rovná dvom, pretože jediná vedľajšia skupina tretieho rádu sa rovná nule

    a minor druhého rádu uvažovaného vyššie je iný ako nula. Na základe Kronecker-Capelliho vety je možné tvrdiť kompatibilitu pôvodného systému lineárnych rovníc, keďže Rank(A)=Rank(T)=2 .

    Ako základ minor berieme . Tvoria ju koeficienty prvej a druhej rovnice:

    Tretia rovnica systému sa nezúčastňuje na tvorbe základnej moll, preto ju vylúčime zo systému na základe vety o poradí matice:

    Takto sme získali elementárny systém lineárnych algebraických rovníc. Vyriešime to Cramerovou metódou:

    odpoveď:

    x 1 \u003d 1, x 2 \u003d 2.

    Ak je počet rovníc r vo výslednom SLAE menší ako počet neznámych premenných n, potom v ľavých častiach rovníc ponecháme členy tvoriace základnú moll a zvyšné členy prenesieme do pravých častí rovníc rovnice. systém s opačným znamienkom.

    Neznáme premenné (je ich r), ktoré zostávajú na ľavej strane rovníc, sa nazývajú hlavné.

    Volajú sa neznáme premenné (je ich n - r), ktoré skončili na pravej strane zadarmo.

    Teraz predpokladáme, že voľné neznáme premenné môžu nadobudnúť ľubovoľné hodnoty, zatiaľ čo r hlavných neznámych premenných bude vyjadrené v termínoch voľných neznámych premenných jedinečným spôsobom. Ich vyjadrenie možno nájsť riešením výsledného SLAE Cramerovou metódou, maticovou metódou alebo Gaussovou metódou.

    Vezmime si príklad.

    Príklad.

    Riešenie systému lineárnych algebraických rovníc .

    Riešenie.

    Nájdite poradie hlavnej matice systému metódou hraničiacich maloletých. Zoberme si a 1 1 = 1 ako nenulovú vedľajšiu hodnotu prvého poriadku. Začnime hľadať nenulového neplnoletého druhoradého okolo tohto maloletého:

    Našli sme teda nenulovú moll druhého rádu. Začnime hľadať nenulový hraničný moll tretieho rádu:

    Hodnosť hlavnej matice je teda tri. Poradie rozšírenej matice sa tiež rovná trom, to znamená, že systém je konzistentný.

    Ako základný sa bude brať nájdený nenulový moll tretieho rádu.

    Pre prehľadnosť uvádzame prvky, ktoré tvoria základ moll:

    Pojmy, ktoré sa podieľajú na základnej moll, ponecháme na ľavej strane rovníc systému a zvyšok prenesieme s opačnými znamienkami na pravú stranu:

    Voľným neznámym premenným x 2 a x 5 dávame ľubovoľné hodnoty, teda berieme , kde sú ľubovoľné čísla. V tomto prípade má SLAE formu

    Získanú elementárnu sústavu lineárnych algebraických rovníc riešime Cramerovou metódou:

    V dôsledku toho, .

    V odpovedi nezabudnite uviesť voľné neznáme premenné.

    odpoveď:

    Kde sú ľubovoľné čísla.

Zhrnúť.

Na riešenie sústavy lineárnych algebraických rovníc všeobecného tvaru najprv zistíme jej kompatibilitu pomocou Kroneckerovej-Capelliho vety. Ak sa poradie hlavnej matice nerovná hodnote rozšírenej matice, potom dospejeme k záveru, že systém je nekonzistentný.

Ak sa hodnosť hlavnej matice rovná hodnosti rozšírenej matice, vyberieme základnú vedľajšiu a zahodíme rovnice systému, ktoré sa nezúčastňujú na tvorbe vybranej základnej vedľajšej.

Ak sa poradie základnej minor rovná počtu neznámych premenných, potom má SLAE jedinečné riešenie, ktoré možno nájsť akoukoľvek nám známou metódou.

Ak je poradie vedľajšej bázy menšie ako počet neznámych premenných, potom na ľavej strane rovníc systému ponecháme členy s hlavnými neznámymi premennými, zvyšné členy prenesieme na pravé strany a priradíme ľubovoľné hodnoty ​na voľné neznáme premenné. Z výslednej sústavy lineárnych rovníc nájdeme hlavné neznáme premenné Cramerovou metódou, maticovou metódou alebo Gaussovou metódou.

Gaussova metóda na riešenie sústav lineárnych algebraických rovníc všeobecného tvaru.

Pomocou Gaussovej metódy je možné riešiť sústavy lineárnych algebraických rovníc akéhokoľvek druhu bez ich predbežného skúmania kompatibility. Proces postupného vylúčenia neznámych premenných umožňuje vyvodiť záver o kompatibilite aj nekonzistencii SLAE a ak existuje riešenie, umožňuje ho nájsť.

Z hľadiska výpočtovej práce je výhodnejšia Gaussova metóda.

Jej podrobný popis a analyzované príklady nájdete v článku Gaussova metóda riešenia sústav lineárnych algebraických rovníc všeobecného tvaru.

Zaznamenávanie všeobecného riešenia homogénnych a nehomogénnych lineárnych algebraických systémov pomocou vektorov základnej sústavy riešení.

V tejto časti sa zameriame na spojené homogénne a nehomogénne systémy lineárnych algebraických rovníc, ktoré majú nekonečný počet riešení.

Poďme sa najskôr zaoberať homogénnymi systémami.

Základný rozhodovací systém Homogénna sústava p lineárnych algebraických rovníc s n neznámymi premennými je množinou (n – r) lineárne nezávislých riešení tejto sústavy, kde r je rád minoritnej bázy hlavnej matice sústavy.

Ak označíme lineárne nezávislé riešenia homogénneho SLAE ako X (1) , X (2) , …, X (n-r) (X (1) , X (2) , …, X (n-r) sú stĺpce matíc rozmeru n o 1 ), potom je všeobecné riešenie tohto homogénneho systému reprezentované ako lineárna kombinácia vektorov základného systému riešení s ľubovoľnými konštantnými koeficientmi С 1 , С 2 , …, С (n-r), teda .

Čo znamená všeobecné riešenie homogénneho systému lineárnych algebraických rovníc (oroslau)?

Význam je jednoduchý: vzorec definuje všetky možné riešenia pôvodného SLAE, inými slovami, berie ľubovoľnú množinu hodnôt ľubovoľných konštánt C 1 , C 2 , ..., C (n-r) , podľa vzorca my získa jedno z riešení pôvodného homogénneho SLAE.

Ak teda nájdeme fundamentálny systém riešení, môžeme všetky riešenia tohto homogénneho SLAE nastaviť ako .

Ukážme si proces konštrukcie základného systému riešení pre homogénny SLAE.

Z pôvodného systému lineárnych rovníc zvolíme základnú moll, vylúčime zo systému všetky ostatné rovnice a na pravú stranu rovníc systému prenesieme s opačnými znamienkami všetky členy obsahujúce voľné neznáme premenné. Dajme voľným neznámym premenným hodnoty 1,0,0,…,0 a vypočítajme hlavné neznáme riešením výslednej elementárnej sústavy lineárnych rovníc akýmkoľvek spôsobom, napríklad Cramerovou metódou. Tak dostaneme X (1) - prvé riešenie fundamentálnej sústavy. Ak dáme voľným neznámym hodnoty 0,1,0,0,…,0 a vypočítame hlavné neznáme, dostaneme X (2) . A tak ďalej. Ak dáme voľným neznámym premenným hodnoty 0,0,…,0,1 a vypočítame hlavné neznáme, dostaneme X (n-r) . Takto bude skonštruovaný základný systém riešení homogénneho SLAE a jeho všeobecné riešenie je možné zapísať do tvaru .

Pre nehomogénne systémy lineárnych algebraických rovníc je všeobecné riešenie reprezentované ako

Pozrime sa na príklady.

Príklad.

Nájdite základnú sústavu riešení a všeobecné riešenie homogénnej sústavy lineárnych algebraických rovníc .

Riešenie.

Hodnosť hlavnej matice homogénnych sústav lineárnych rovníc sa vždy rovná hodnosti rozšírenej matice. Nájdime hodnosť hlavnej matice metódou fringing minors. Ako nenulovú minoritu prvého rádu berieme prvok a 1 1 = 9 hlavnej matice systému. Nájdite hraničnú nenulovú moll druhého rádu:

Nájde sa minor druhého rádu, odlišný od nuly. Poďme cez neplnoletých tretieho rádu, ktorí s ním hraničia, pri hľadaní nenulovej jednotky:

Všetky hraničiace neplnoleté osoby tretieho rádu sa rovnajú nule, preto je poradie hlavnej a rozšírenej matice dve. Vezmime si základnú mollovú. Kvôli prehľadnosti si všimneme prvky systému, ktoré ho tvoria:

Tretia rovnica pôvodného SLAE sa nezúčastňuje na tvorbe základnej moll, preto ju možno vylúčiť:

Ponecháme členy obsahujúce hlavné neznáme na pravej strane rovníc a prenesieme členy s voľnými neznámymi na pravú stranu:

Zostavme základnú sústavu riešení pôvodnej homogénnej sústavy lineárnych rovníc. Základný systém riešení tohto SLAE sa skladá z dvoch riešení, keďže pôvodný SLAE obsahuje štyri neznáme premenné a poradie jeho základnej minor sú dve. Aby sme našli X (1), dáme voľným neznámym premenným hodnoty x 2 \u003d 1, x 4 \u003d 0, potom nájdeme hlavné neznáme zo systému rovníc
.