Jak znaleźć pierwiastki równania kwadratowego bez s. Równania kwadratowe - przykłady z rozwiązaniami, cechami i wzorami


Kontynuujemy studiowanie tematu ” rozwiązywanie równań" Zapoznaliśmy się już z równaniami liniowymi i przechodzimy do zapoznania się z nimi równania kwadratowe.

Najpierw przyjrzymy się, czym jest równanie kwadratowe, jak się je zapisuje w ogólnej formie i podamy powiązane definicje. Następnie użyjemy przykładów, aby szczegółowo zbadać, w jaki sposób rozwiązuje się niekompletne równania kwadratowe. Następnie przejdziemy do rozwiązywania pełnych równań, uzyskamy wzór na pierwiastek, zapoznamy się z dyskryminatorem równania kwadratowego i rozważymy rozwiązania typowych przykładów. Na koniec prześledźmy powiązania między pierwiastkami i współczynnikami.

Nawigacja strony.

Co to jest równanie kwadratowe? Ich typy

Najpierw musisz jasno zrozumieć, czym jest równanie kwadratowe. Dlatego logiczne jest rozpoczęcie rozmowy o równaniach kwadratowych od definicji równania kwadratowego, a także powiązanych definicji. Następnie możesz rozważyć główne typy równań kwadratowych: równania zredukowane i nieredukowane, a także równania pełne i niekompletne.

Definicja i przykłady równań kwadratowych

Definicja.

Równanie kwadratowe jest równaniem postaci a x 2 +b x+c=0, gdzie x jest zmienną, a, b i c to pewne liczby, a a jest różne od zera.

Powiedzmy od razu, że równania kwadratowe są często nazywane równaniami drugiego stopnia. Wynika to z faktu, że równanie kwadratowe jest równanie algebraiczne drugi stopień.

Podana definicja pozwala nam podać przykłady równań kwadratowych. Zatem 2 x 2 +6 x+1=0, 0,2 x 2 +2,5 x+0,03=0 itd. Są to równania kwadratowe.

Definicja.

Liczby a, b i c nazywane są współczynniki równania kwadratowego a·x 2 +b·x+c=0, a współczynnik a nazywany jest pierwszym lub najwyższym, lub współczynnikiem x 2, b jest drugim współczynnikiem, czyli współczynnikiem x, a c jest wyrazem wolnym .

Weźmy na przykład równanie kwadratowe w postaci 5 x 2 −2 x −3=0, tutaj współczynnik wiodący wynosi 5, drugi współczynnik jest równy −2, a wyraz wolny jest równy −3. Należy pamiętać, że gdy współczynniki b i/lub c są ujemne, jak w podanym przykładzie, krótka postać równania kwadratowego to 5 x 2 −2 x−3=0 , a nie 5 x 2 +(−2 ) ·x+(−3)=0 .

Warto zauważyć, że gdy współczynniki a i/lub b są równe 1 lub -1, to zwykle nie są one wyraźnie obecne w równaniu kwadratowym, co wynika ze specyfiki ich zapisywania. Na przykład w równaniu kwadratowym y 2 −y+3=0 współczynnik wiodący wynosi jeden, a współczynnik y jest równy −1.

Równania kwadratowe zredukowane i nieredukowane

W zależności od wartości współczynnika wiodącego rozróżnia się równania kwadratowe zredukowane i nieredukowane. Podajmy odpowiednie definicje.

Definicja.

Nazywa się równanie kwadratowe, w którym współczynnik wiodący wynosi 1 dane równanie kwadratowe. W przeciwnym razie równanie kwadratowe ma postać nietknięty.

Zgodnie z tą definicją równania kwadratowe x 2 −3·x+1=0, x 2 −x−2/3=0, itd. – biorąc pod uwagę, że w każdym z nich pierwszy współczynnik jest równy jeden. A 5 x 2 −x−1=0 itd. - niezredukowane równania kwadratowe, ich współczynniki wiodące są różne od 1.

Z dowolnego niezredukowanego równania kwadratowego, dzieląc obie strony przez współczynnik wiodący, można przejść do równania zredukowanego. Działanie to jest transformacją równoważną, to znaczy otrzymane w ten sposób zredukowane równanie kwadratowe ma te same pierwiastki, co pierwotne nieredukowane równanie kwadratowe, lub podobnie jak ono nie ma pierwiastków.

Spójrzmy na przykład, jak dokonuje się przejścia z nieredukowanego równania kwadratowego do zredukowanego.

Przykład.

Z równania 3 x 2 +12 x−7=0 przejdź do odpowiedniego zredukowanego równania kwadratowego.

Rozwiązanie.

Musimy tylko podzielić obie strony pierwotnego równania przez wiodący współczynnik 3, jest on różny od zera, abyśmy mogli wykonać to działanie. Mamy (3 x 2 +12 x−7):3=0:3, czyli to samo, (3 x 2):3+(12 x):3−7:3=0, a następnie (3: 3) x 2 +(12:3) x−7:3=0, skąd . W ten sposób otrzymaliśmy zredukowane równanie kwadratowe, które jest równoważne pierwotnemu.

Odpowiedź:

Równania kwadratowe zupełne i niezupełne

Definicja równania kwadratowego zawiera warunek a≠0. Warunek ten jest niezbędny, aby równanie a x 2 + b x + c = 0 było kwadratowe, ponieważ gdy a = 0, faktycznie staje się równaniem liniowym w postaci b x + c = 0.

Jeśli chodzi o współczynniki b i c, mogą one być równe zero, zarówno indywidualnie, jak i razem. W takich przypadkach równanie kwadratowe nazywa się niekompletnym.

Definicja.

Nazywa się równaniem kwadratowym a x 2 +b x+c=0 niekompletny, jeśli przynajmniej jeden ze współczynników b, c jest równy zero.

Z kolei

Definicja.

Pełne równanie kwadratowe jest równaniem, w którym wszystkie współczynniki są różne od zera.

Takie nazwy nie zostały nadane przypadkowo. Stanie się to jasne po następujących dyskusjach.

Jeżeli współczynnik b wynosi zero, to równanie kwadratowe przyjmuje postać a·x 2 +0·x+c=0 i jest równoważne równaniu a·x 2 +c=0. Jeżeli c=0, czyli równanie kwadratowe ma postać a·x 2 +b·x+0=0, to można je przepisać jako a·x 2 +b·x=0. A przy b=0 i c=0 otrzymujemy równanie kwadratowe a·x 2 =0. Powstałe równania różnią się od pełnego równania kwadratowego tym, że ich lewa strona nie zawiera ani wyrazu ze zmienną x, ani wyrazu wolnego, ani obu. Stąd ich nazwa - niepełne równania kwadratowe.

Zatem równania x 2 +x+1=0 i −2 x 2 −5 x+0,2=0 są przykładami pełnych równań kwadratowych, a x 2 =0, −2 x 2 =0, 5 x 2 +3=0 , −x 2 −5 x=0 są niepełnymi równaniami kwadratowymi.

Rozwiązywanie niepełnych równań kwadratowych

Z informacji zawartych w poprzednim akapicie wynika, że ​​tak trzy typy niepełnych równań kwadratowych:

  • a·x 2 =0, odpowiadają temu współczynniki b=0 i c=0;
  • a x 2 +c=0 gdy b=0 ;
  • i a·x 2 +b·x=0, gdy c=0.

Przyjrzyjmy się po kolei, jak rozwiązuje się niepełne równania kwadratowe każdego z tych typów.

a x 2 = 0

Zacznijmy od rozwiązania niepełnych równań kwadratowych, w których współczynniki b i c są równe zeru, czyli równań w postaci a x 2 =0. Równanie a·x 2 =0 jest równoważne równaniu x 2 =0, które otrzymuje się z oryginału poprzez podzielenie obu części przez niezerową liczbę a. Oczywiście pierwiastek równania x 2 = 0 wynosi zero, ponieważ 0 2 = 0. Równanie to nie ma innych pierwiastków, co tłumaczy się faktem, że dla dowolnej niezerowej liczby p zachodzi nierówność p 2 > 0, co oznacza, że ​​dla p ≠0 równość p 2 = 0 nigdy nie jest osiągnięta.

Zatem niekompletne równanie kwadratowe a·x 2 =0 ma pojedynczy pierwiastek x=0.

Jako przykład podajemy rozwiązanie niepełnego równania kwadratowego -4 x 2 =0. Jest to równoważne równaniu x 2 = 0, jego jedynym pierwiastkiem jest x = 0, dlatego pierwotne równanie ma pojedynczy pierwiastek zero.

Krótkie rozwiązanie w tym przypadku można zapisać w następujący sposób:
−4 x 2 =0 ,
x2 =0,
x=0 .

ax2 +c=0

Przyjrzyjmy się teraz, jak rozwiązuje się niepełne równania kwadratowe, w których współczynnik b wynosi zero, a c≠0, czyli równania w postaci a x 2 +c=0. Wiemy, że przeniesienie wyrazu z jednej strony równania na drugą z przeciwnym znakiem, a także podzielenie obu stron równania przez liczbę niezerową daje równanie równoważne. Dlatego możemy przeprowadzić następujące równoważne przekształcenia niepełnego równania kwadratowego a x 2 +c=0:

  • przesuń c na prawą stronę, co daje równanie a x 2 =−c,
  • i dzielimy obie strony przez a, otrzymujemy .

Otrzymane równanie pozwala nam wyciągnąć wnioski na temat jego pierwiastków. W zależności od wartości a i c wartość wyrażenia może być ujemna (na przykład, jeśli a=1 i c=2, to ) lub dodatnia (na przykład, jeśli a=−2 i c=6, wtedy ), to nie jest zero , ponieważ zgodnie z warunkiem c≠0. Przyjrzyjmy się przypadkom osobno.

Jeśli , to równanie nie ma pierwiastków. To stwierdzenie wynika z faktu, że kwadrat dowolnej liczby jest liczbą nieujemną. Wynika z tego, że gdy , to dla dowolnej liczby p równość nie może być prawdziwa.

Jeśli , to sytuacja z pierwiastkami równania jest inna. W tym przypadku, jeśli pamiętamy o , to pierwiastek równania od razu staje się oczywisty, jest to liczba, ponieważ . Łatwo zgadnąć, że liczba ta jest w istocie także pierwiastkiem równania. Równanie to nie ma innych pierwiastków, co można wykazać na przykład przez sprzeczność. Zróbmy to.

Oznaczmy pierwiastki równania właśnie ogłoszonego jako x 1 i −x 1 . Załóżmy, że równanie ma jeszcze jeden pierwiastek x 2, inny niż wskazane pierwiastki x 1 i −x 1. Wiadomo, że podstawienie jego pierwiastków do równania zamiast x powoduje, że równanie staje się poprawną równością liczbową. Dla x 1 i −x 1 mamy , a dla x 2 mamy . Właściwości równości liczbowych pozwalają nam na odejmowanie wyraz po wyrazie prawidłowych równości liczbowych, zatem odjęcie odpowiednich części równości daje x 1 2 −x 2 2 =0. Właściwości operacji na liczbach pozwalają nam zapisać otrzymaną równość jako (x 1 −x 2)·(x 1 +x 2)=0. Wiemy, że iloczyn dwóch liczb jest równy zero wtedy i tylko wtedy, gdy przynajmniej jedna z nich jest równa zero. Zatem z otrzymanej równości wynika, że ​​x 1 −x 2 =0 i/lub x 1 +x 2 =0, czyli to samo, x 2 =x 1 i/lub x 2 =−x 1. Doszliśmy więc do sprzeczności, ponieważ na początku powiedzieliśmy, że pierwiastek równania x 2 jest różny od x 1 i −x 1. To dowodzi, że równanie nie ma innych pierwiastków niż i .

Podsumujmy informacje zawarte w tym akapicie. Niekompletne równanie kwadratowe a x 2 +c=0 jest równoważne równaniu to

  • nie ma korzeni, jeśli ,
  • ma dwa pierwiastki i , jeśli .

Rozważmy przykłady rozwiązywania niepełnych równań kwadratowych postaci a·x 2 +c=0.

Zacznijmy od równania kwadratowego 9 x 2 +7=0. Po przesunięciu wyrazu wolnego na prawą stronę równania przyjmie on postać 9 x 2 =−7. Dzieląc obie strony otrzymanego równania przez 9, otrzymujemy . Ponieważ prawa strona ma liczbę ujemną, równanie to nie ma pierwiastków, dlatego pierwotne niekompletne równanie kwadratowe 9 x 2 +7 = 0 nie ma pierwiastków.

Rozwiążmy kolejne niekompletne równanie kwadratowe −x 2 +9=0. Przesuwamy dziewiątkę w prawą stronę: −x 2 = −9. Teraz dzielimy obie strony przez -1, otrzymujemy x 2 = 9. Po prawej stronie znajduje się liczba dodatnia, z której wnioskujemy, że lub . Następnie zapisujemy ostateczną odpowiedź: niepełne równanie kwadratowe −x 2 +9=0 ma dwa pierwiastki x=3 lub x=−3.

ax2 +bx=0

Pozostaje zająć się rozwiązaniem ostatniego typu niepełnych równań kwadratowych dla c=0. Niekompletne równania kwadratowe postaci a x 2 + b x = 0 pozwalają rozwiązać metoda faktoryzacji. Oczywiście możemy, znajdując się po lewej stronie równania, dla którego wystarczy wyjąć wspólny współczynnik x z nawiasów. Pozwala nam to przejść od pierwotnego niepełnego równania kwadratowego do równoważnego równania w postaci x·(a·x+b)=0. Równanie to jest równoważne zbiorowi dwóch równań x=0 i a·x+b=0, z których drugie jest liniowe i ma pierwiastek x=−b/a.

Zatem niepełne równanie kwadratowe a·x 2 +b·x=0 ma dwa pierwiastki x=0 i x=−b/a.

Aby skonsolidować materiał, przeanalizujemy rozwiązanie na konkretnym przykładzie.

Przykład.

Rozwiązać równanie.

Rozwiązanie.

Usunięcie x z nawiasów daje równanie . Jest to równoważne dwóm równaniom x=0 i . Rozwiązujemy powstałe równanie liniowe: i dzieląc liczbę mieszaną przez ułamek zwykły, znajdujemy . Dlatego pierwiastki pierwotnego równania to x=0 i .

Po nabyciu niezbędnej praktyki rozwiązania takich równań można w skrócie zapisać:

Odpowiedź:

x=0 , .

Dyskryminator, wzór na pierwiastki równania kwadratowego

Aby rozwiązać równania kwadratowe, istnieje wzór na pierwiastek. Zapiszmy to wzór na pierwiastki równania kwadratowego: , Gdzie D=b 2 −4 za do- tak zwana dyskryminator równania kwadratowego. Wpis zasadniczo oznacza, że ​​.

Warto wiedzieć, w jaki sposób wyprowadzono wzór na pierwiastek i jak można go wykorzystać do znalezienia pierwiastków równań kwadratowych. Rozwiążmy to.

Wyprowadzenie wzoru na pierwiastki równania kwadratowego

Musimy rozwiązać równanie kwadratowe a·x 2 +b·x+c=0. Wykonajmy kilka równoważnych przekształceń:

  • Możemy podzielić obie strony tego równania przez niezerową liczbę a, uzyskując następujące równanie kwadratowe.
  • Teraz wybierz cały kwadrat po lewej stronie: . Następnie równanie przyjmie postać .
  • Na tym etapie możliwe jest przeniesienie dwóch ostatnich wyrazów na prawą stronę z przeciwnym znakiem, mamy .
  • Przekształćmy także wyrażenie po prawej stronie: .

W efekcie otrzymujemy równanie równoważne pierwotnemu równaniu kwadratowemu a·x 2 +b·x+c=0.

Rozwiązaliśmy już równania o podobnej formie w poprzednich akapitach, kiedy to sprawdzaliśmy. Pozwala nam to wyciągnąć następujące wnioski dotyczące pierwiastków równania:

  • jeżeli , to równanie nie ma rzeczywistych rozwiązań;
  • jeżeli , to równanie ma zatem postać , z której widoczny jest jedyny jego pierwiastek;
  • jeśli , to lub , co jest tym samym co lub , to znaczy równanie ma dwa pierwiastki.

Zatem obecność lub brak pierwiastków równania, a zatem pierwotnego równania kwadratowego, zależy od znaku wyrażenia po prawej stronie. Z kolei znak tego wyrażenia wyznacza znak licznika, gdyż mianownik 4·a 2 jest zawsze dodatni, czyli znak wyrażenia b 2 −4·a·c. To wyrażenie b 2 −4 a c zostało nazwane dyskryminator równania kwadratowego i oznaczony literą D. Stąd jasna jest istota dyskryminatora - na podstawie jego wartości i znaku wnioskują, czy równanie kwadratowe ma rzeczywiste pierwiastki, a jeśli tak, to jaka jest ich liczba - jeden czy dwa.

Wróćmy do równania i przepiszmy je stosując notację dyskryminacyjną: . I wyciągamy wnioski:

  • jeśli D<0 , то это уравнение не имеет действительных корней;
  • jeśli D=0, to równanie to ma jeden pierwiastek;
  • wreszcie, jeśli D>0, to równanie ma dwa pierwiastki lub, co można zapisać w postaci lub, i po rozwinięciu i sprowadzeniu ułamków do wspólnego mianownika otrzymujemy.

Wyprowadziliśmy więc wzory na pierwiastki równania kwadratowego, które wyglądają jak , gdzie dyskryminator D oblicza się ze wzoru D=b 2 −4·a·c.

Za ich pomocą, z dodatnim dyskryminatorem, możesz obliczyć oba pierwiastki rzeczywiste równania kwadratowego. Gdy dyskryminator jest równy zero, oba wzory dają tę samą wartość pierwiastka, co odpowiada jednoznacznemu rozwiązaniu równania kwadratowego. A w przypadku ujemnego dyskryminatora, próbując użyć wzoru na pierwiastek równania kwadratowego, mamy do czynienia z wyodrębnieniem pierwiastka kwadratowego z liczby ujemnej, co wykracza poza zakres szkolnego programu nauczania. W przypadku ujemnego dyskryminatora równanie kwadratowe nie ma rzeczywistych pierwiastków, ale ma parę złożony koniugat korzenie, które można znaleźć, korzystając z tych samych wzorów na pierwiastki, które otrzymaliśmy.

Algorytm rozwiązywania równań kwadratowych za pomocą wzorów pierwiastkowych

W praktyce przy rozwiązywaniu równań kwadratowych można od razu skorzystać ze wzoru na pierwiastek w celu obliczenia ich wartości. Ale jest to bardziej związane ze znalezieniem złożonych korzeni.

Jednak na szkolnym kursie algebry zwykle nie mówimy o zespolonych, ale o rzeczywistych pierwiastkach równania kwadratowego. W takim przypadku wskazane jest, aby przed użyciem wzorów na pierwiastki równania kwadratowego najpierw znaleźć dyskryminator, upewnić się, że jest on nieujemny (w przeciwnym razie możemy stwierdzić, że równanie nie ma pierwiastków rzeczywistych), i dopiero wtedy obliczyć wartości pierwiastków.

Powyższe rozumowanie pozwala nam pisać algorytm rozwiązywania równania kwadratowego. Aby rozwiązać równanie kwadratowe a x 2 +b x+c=0, należy:

  • korzystając ze wzoru dyskryminacyjnego D=b 2 −4·a·c oblicz jego wartość;
  • wywnioskować, że równanie kwadratowe nie ma pierwiastków rzeczywistych, jeśli wyróżnik jest ujemny;
  • obliczyć jedyny pierwiastek równania ze wzoru, jeśli D=0;
  • znajdź dwa rzeczywiste pierwiastki równania kwadratowego, korzystając ze wzoru na pierwiastek, jeśli wyróżnik jest dodatni.

Tutaj po prostu zauważamy, że jeśli dyskryminator jest równy zero, możesz również użyć wzoru; da on tę samą wartość co .

Można przejść do przykładów zastosowania algorytmu rozwiązywania równań kwadratowych.

Przykłady rozwiązywania równań kwadratowych

Rozważmy rozwiązania trzech równań kwadratowych z wyróżnikiem dodatnim, ujemnym i zerowym. Po zapoznaniu się z ich rozwiązaniem analogicznie możliwe będzie rozwiązanie dowolnego innego równania kwadratowego. Zaczynajmy.

Przykład.

Znajdź pierwiastki równania x 2 +2·x−6=0.

Rozwiązanie.

W tym przypadku mamy następujące współczynniki równania kwadratowego: a=1, b=2 i c=−6. Zgodnie z algorytmem należy najpierw obliczyć dyskryminator, w tym celu podstawiamy wskazane a, b i c do wzoru dyskryminacyjnego, mamy D=b 2 −4·a·c=2 2 −4·1·(−6)=4+24=28. Ponieważ 28>0, czyli dyskryminator jest większy od zera, równanie kwadratowe ma dwa pierwiastki rzeczywiste. Znajdźmy je za pomocą wzoru głównego, otrzymamy , tutaj możesz uprościć wynikowe wyrażenia, wykonując przesunięcie mnożnika poza znak pierwiastka a następnie redukcja ułamka:

Odpowiedź:

Przejdźmy do następnego typowego przykładu.

Przykład.

Rozwiąż równanie kwadratowe −4 x 2 +28 x−49=0 .

Rozwiązanie.

Zaczynamy od znalezienia dyskryminatora: D=28 2 −4·(−4)·(−49)=784−784=0. Dlatego to równanie kwadratowe ma jeden pierwiastek, który znajdujemy jako , to znaczy

Odpowiedź:

x=3,5.

Pozostaje rozważyć rozwiązanie równań kwadratowych z ujemnym dyskryminatorem.

Przykład.

Rozwiąż równanie 5·y 2 +6·y+2=0.

Rozwiązanie.

Oto współczynniki równania kwadratowego: a=5, b=6 i c=2. Podstawiamy te wartości do wzoru dyskryminacyjnego, mamy D=b 2 −4·a·c=6 2 −4·5·2=36−40=−4. Dyskryminator jest ujemny, dlatego to równanie kwadratowe nie ma rzeczywistych pierwiastków.

Jeśli chcesz wskazać pierwiastki złożone, stosujemy dobrze znany wzór na pierwiastki równania kwadratowego i wykonujemy operacje na liczbach zespolonych:

Odpowiedź:

nie ma prawdziwych korzeni, złożone korzenie to: .

Zauważmy jeszcze raz, że jeśli dyskryminator równania kwadratowego jest ujemny, to w szkole zwykle od razu zapisują odpowiedź, w której wskazują, że nie ma pierwiastków rzeczywistych i nie znaleziono pierwiastków zespolonych.

Wzór na pierwiastek dla parzystych drugich współczynników

Wzór na pierwiastki równania kwadratowego, gdzie D=b 2 −4·a·c pozwala otrzymać wzór w postaci bardziej zwartej, pozwalającej na rozwiązywanie równań kwadratowych z parzystym współczynnikiem dla x (lub po prostu z współczynnik mający na przykład postać 2·n lub 14·ln5=2,7·ln5 ). Wyciągnijmy ją.

Powiedzmy, że musimy rozwiązać równanie kwadratowe w postaci a x 2 +2 n x+c=0. Znajdźmy jego korzenie, korzystając ze znanego nam wzoru. W tym celu obliczamy dyskryminator D=(2 n) 2 −4 za c=4 n 2 −4 za c=4 (n 2 −a do), a następnie korzystamy ze wzoru na pierwiastek:

Oznaczmy wyrażenie n 2 −ac jako D 1 (czasami jest to oznaczone jako D „). Następnie wzór na pierwiastki rozważanego równania kwadratowego z drugim współczynnikiem 2 n przyjmie postać , gdzie D 1 = n 2 −a·c.

Łatwo zauważyć, że D=4·D 1, czyli D 1 =D/4. Innymi słowy, D 1 jest czwartą częścią dyskryminatora. Jest oczywiste, że znak D 1 jest taki sam jak znak D . Oznacza to, że znak D 1 jest również wskaźnikiem obecności lub braku pierwiastków równania kwadratowego.

Zatem, aby rozwiązać równanie kwadratowe z drugim współczynnikiem 2·n, potrzebujesz

  • Oblicz D 1 = n 2 −a·c ;
  • Jeśli D1<0 , то сделать вывод, что действительных корней нет;
  • Jeśli D 1 = 0, to oblicz jedyny pierwiastek równania, korzystając ze wzoru;
  • Jeśli D 1 > 0, to znajdź dwa pierwiastki rzeczywiste, korzystając ze wzoru.

Rozważmy rozwiązanie przykładu, korzystając ze wzoru na pierwiastek uzyskanego w tym akapicie.

Przykład.

Rozwiąż równanie kwadratowe 5 x 2 −6 x −32=0 .

Rozwiązanie.

Drugi współczynnik tego równania można przedstawić jako 2·(−3) . Oznacza to, że możesz przepisać pierwotne równanie kwadratowe w postaci 5 x 2 +2 (−3) x−32=0, tutaj a=5, n=−3 i c=−32 i obliczyć czwartą część dyskryminujący: re 1 = n 2 −a·c=(−3) 2 −5·(−32)=9+160=169. Ponieważ jego wartość jest dodatnia, równanie ma dwa rzeczywiste pierwiastki. Znajdźmy je, korzystając z odpowiedniego wzoru na pierwiastek:

Należy zauważyć, że możliwe było użycie zwykłego wzoru na pierwiastki równania kwadratowego, ale w tym przypadku konieczne byłoby wykonanie większej pracy obliczeniowej.

Odpowiedź:

Upraszczanie postaci równań kwadratowych

Czasami przed przystąpieniem do obliczania pierwiastków równania kwadratowego za pomocą wzorów nie zaszkodzi zadać pytanie: „Czy można uprościć postać tego równania?” Zgadzam się, że pod względem obliczeniowym łatwiej będzie rozwiązać równanie kwadratowe 11 x 2 −4 x−6=0 niż 1100 x 2 −400 x−600=0.

Zazwyczaj uproszczenie postaci równania kwadratowego osiąga się poprzez pomnożenie lub podzielenie obu stron przez określoną liczbę. Na przykład w poprzednim akapicie można było uprościć równanie 1100 x 2 −400 x −600=0 dzieląc obie strony przez 100.

Podobną transformację przeprowadza się za pomocą równań kwadratowych, których współczynniki nie są . W takim przypadku obie strony równania są zwykle dzielone przez wartości bezwzględne jego współczynników. Weźmy na przykład równanie kwadratowe 12 x 2 −42 x+48=0. wartości bezwzględne jego współczynników: NWD(12, 42, 48)= NWD(12, 42), 48)= NWD(6, 48)=6. Dzieląc obie strony pierwotnego równania kwadratowego przez 6, otrzymujemy równoważne równanie kwadratowe 2 x 2 −7 x+8=0.

Mnożenie obu stron równania kwadratowego jest zwykle wykonywane w celu pozbycia się współczynników ułamkowych. W tym przypadku mnożenie odbywa się przez mianowniki jego współczynników. Na przykład, jeśli obie strony równania kwadratowego pomnożymy przez LCM(6, 3, 1)=6, wówczas przyjmiemy prostszą postać x 2 +4·x−18=0.

Podsumowując ten punkt, zauważamy, że prawie zawsze pozbywają się minusa przy najwyższym współczynniku równania kwadratowego, zmieniając znaki wszystkich wyrazów, co odpowiada mnożeniu (lub dzieleniu) obu stron przez -1. Na przykład zwykle przechodzi się od równania kwadratowego −2 x 2 −3 x+7=0 do rozwiązania 2 x 2 +3 x−7=0 .

Zależność pierwiastków i współczynników równania kwadratowego

Wzór na pierwiastki równania kwadratowego wyraża pierwiastki równania poprzez jego współczynniki. Na podstawie wzoru pierwiastkowego można uzyskać inne zależności między pierwiastkami a współczynnikami.

Najbardziej znane i mające zastosowanie wzory z twierdzenia Viety mają postać i . W szczególności dla danego równania kwadratowego suma pierwiastków jest równa drugiemu współczynnikowi o przeciwnym znaku, a iloczyn pierwiastków jest równy członowi swobodnemu. Na przykład patrząc na postać równania kwadratowego 3 x 2 −7 x + 22 = 0, możemy od razu powiedzieć, że suma jego pierwiastków wynosi 7/3, a iloczyn pierwiastków wynosi 22 /3.

Korzystając z już napisanych wzorów, można uzyskać szereg innych powiązań między pierwiastkami i współczynnikami równania kwadratowego. Na przykład sumę kwadratów pierwiastków równania kwadratowego można wyrazić poprzez jego współczynniki: .

Bibliografia.

  • Algebra: podręcznik dla 8 klasy. ogólne wykształcenie instytucje / [Yu. N. Makaryczew, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova]; edytowany przez SA Telyakovsky. - wyd. 16. - M.: Edukacja, 2008. - 271 s. : chory. - ISBN 978-5-09-019243-9.
  • Mordkovich A.G. Algebra. 8 klasa. Za 2 godziny Część 1. Podręcznik dla uczniów szkół ogólnokształcących / A. G. Mordkovich. - wyd. 11, usunięte. - M.: Mnemosyne, 2009. - 215 s.: il. ISBN 978-5-346-01155-2.

Wiadomo, że jest to szczególna wersja osi równości 2 + bx + c = o, gdzie a, b i c są rzeczywistymi współczynnikami dla nieznanego x oraz gdzie a ≠ o, a b i c będą zerami - jednocześnie lub osobno. Na przykład c = o, b ≠ o lub odwrotnie. Prawie zapamiętaliśmy definicję równania kwadratowego.

Trójmian drugiego stopnia wynosi zero. Jego pierwszy współczynnik a ≠ o, b i c może przyjmować dowolne wartości. Wartość zmiennej x będzie wtedy taka, gdy podstawienie zamieni ją w poprawną równość liczbową. Skupmy się na pierwiastkach rzeczywistych, chociaż równania mogą być również rozwiązaniami.Zwyczajowo równanie nazywa się zupełnym, w którym żaden ze współczynników nie jest równy o, a ≠ o, b ≠ o, c ≠ o.
Rozwiążmy przykład. 2x 2 -9x-5 = och, znajdujemy
D = 81+40 = 121,
D jest dodatnie, co oznacza, że ​​istnieją pierwiastki, x 1 = (9+√121):4 = 5, a drugie x 2 = (9-√121):4 = -o,5. Sprawdzenie pomoże upewnić się, że są one prawidłowe.

Oto krok po kroku rozwiązanie równania kwadratowego

Za pomocą dyskryminatora można rozwiązać dowolne równanie, po lewej stronie którego znany jest trójmian kwadratowy dla a ≠ o. W naszym przykładzie. 2x 2 -9x-5 = 0 (ax 2 +in+s = o)

Zastanówmy się, jakie są niepełne równania drugiego stopnia

  1. topór 2 +in = o. Termin wolny, współczynnik c przy x 0, jest tutaj równy zero, w ≠ o.
    Jak rozwiązać niepełne równanie kwadratowe tego typu? Wyjmijmy x z nawiasów. Przypomnijmy sobie, kiedy iloczyn dwóch czynników jest równy zero.
    x(ax+b) = o, może to mieć miejsce, gdy x = o lub gdy ax+b = o.
    Po rozwiązaniu drugiego zadania mamy x = -в/а.
    W rezultacie mamy pierwiastki x 1 = 0, zgodnie z obliczeniami x 2 = -b/a.
  2. Teraz współczynnik x jest równy o, a c nie jest równe (≠) o.
    x 2 + c = o. Przesuńmy c na prawą stronę równości, otrzymamy x 2 = -с. To równanie ma pierwiastki rzeczywiste tylko wtedy, gdy -c jest liczbą dodatnią (c ‹ o),
    x 1 jest wtedy równe odpowiednio √(-c), x 2 wynosi -√(-c). W przeciwnym razie równanie nie ma w ogóle pierwiastków.
  3. Ostatnia opcja: b = c = o, czyli topór 2 = o. Naturalnie takie proste równanie ma jeden pierwiastek, x = o.

Specjalne przypadki

Przyjrzeliśmy się, jak rozwiązać niekompletne równanie kwadratowe, a teraz weźmy dowolne typy.

  • W pełnym równaniu kwadratowym drugi współczynnik x jest liczbą parzystą.
    Niech k = o,5b. Mamy wzory na obliczenie wyróżnika i pierwiastka.
    D/4 = k 2 - ac, pierwiastki oblicza się jako x 1,2 = (-k±√(D/4))/a dla D › o.
    x = -k/a przy D = o.
    Nie ma pierwiastków dla D ‹ o.
  • Dane są równania kwadratowe, gdy współczynnik x kwadrat jest równy 1, zwykle zapisuje się je x 2 + рх + q = o. Wszystkie powyższe wzory mają do nich zastosowanie, ale obliczenia są nieco prostsze.
    Przykład, x 2 -4x-9 = 0. Oblicz D: 2 2 +9, D = 13.
    x 1 = 2+√13, x 2 = 2-√13.
  • Poza tym łatwo zastosować się do podanych, mówi, że suma pierwiastków równania jest równa -p, drugi współczynnik z minusem (czyli znak przeciwny), a iloczyn tych samych pierwiastków będzie być równe q, członowi swobodnemu. Zobacz, jak łatwo byłoby słownie wyznaczyć pierwiastki tego równania. Dla współczynników niezredukowanych (dla wszystkich współczynników różnych od zera) twierdzenie to można zastosować w następujący sposób: suma x 1 + x 2 równa się -b/a, iloczyn x 1 · x 2 równa się c/a.

Suma członu wolnego c i pierwszego współczynnika a jest równa współczynnikowi b. W tej sytuacji równanie ma co najmniej jeden pierwiastek (łatwy do udowodnienia), pierwszy z konieczności jest równy -1, a drugi -c/a, jeśli istnieje. Możesz sam sprawdzić jak rozwiązać niepełne równanie kwadratowe. Bułka z masłem. Współczynniki mogą pozostawać ze sobą w określonych relacjach

  • x 2 +x = o, 7x 2 -7 = o.
  • Suma wszystkich współczynników jest równa o.
    Pierwiastkami takiego równania są 1 i c/a. Przykład, 2x 2 -15x+13 = o.
    x 1 = 1, x 2 = 13/2.

Istnieje wiele innych sposobów rozwiązywania różnych równań drugiego stopnia. Oto na przykład metoda wyodrębnienia pełnego kwadratu z danego wielomianu. Istnieje kilka metod graficznych. Kiedy często będziesz miał do czynienia z takimi przykładami, nauczysz się je „klikać” jak nasiona, bo wszystkie metody przychodzą Ci na myśl automatycznie.

Dzięki temu programowi matematycznemu jest to możliwe rozwiązać równanie kwadratowe.

Program nie tylko daje odpowiedź na problem, ale także wyświetla proces rozwiązania na dwa sposoby:
- użycie dyskryminatora
- korzystając z twierdzenia Viety (jeśli to możliwe).

Co więcej, odpowiedź jest wyświetlana jako dokładna, a nie przybliżona.
Przykładowo dla równania \(81x^2-16x-1=0\) odpowiedź jest wyświetlana w postaci:

$$ x_1 = \frac(8+\sqrt(145))(81), \quad x_2 = \frac(8-\sqrt(145))(81) $$ i nie tak: \(x_1 = 0,247; \quad x_2 = -0,05\)

Program ten może być przydatny dla uczniów szkół średnich w szkołach ogólnokształcących podczas przygotowań do sprawdzianów i egzaminów, podczas sprawdzania wiedzy przed egzaminem Unified State Exam, a także dla rodziców do kontroli rozwiązania wielu problemów z matematyki i algebry. A może wynajęcie korepetytora lub zakup nowych podręczników jest dla Ciebie zbyt kosztowny? A może po prostu chcesz jak najszybciej odrobić zadanie domowe z matematyki lub algebry? W tym przypadku możesz także skorzystać z naszych programów ze szczegółowymi rozwiązaniami.

W ten sposób możesz prowadzić własne szkolenie i/lub szkolenie swoich młodszych braci, a jednocześnie wzrasta poziom edukacji w zakresie rozwiązywania problemów.

Jeśli nie znasz zasad wprowadzania wielomianu kwadratowego, zalecamy zapoznanie się z nimi.

Zasady wprowadzania wielomianu kwadratowego

Dowolna litera łacińska może działać jako zmienna.
Na przykład: \(x, y, z, a, b, c, o, p, q\) itp.

Liczby można wprowadzać jako liczby całkowite lub ułamkowe.
Co więcej, liczby ułamkowe można wprowadzać nie tylko w postaci ułamka dziesiętnego, ale także w postaci ułamka zwykłego.

Zasady wprowadzania ułamków dziesiętnych.
W ułamkach dziesiętnych część ułamkową można oddzielić od całości kropką lub przecinkiem.
Na przykład możesz wprowadzić ułamki dziesiętne w następujący sposób: 2,5x - 3,5x^2

Zasady wpisywania ułamków zwykłych.
Tylko liczba całkowita może pełnić funkcję licznika, mianownika i części całkowitej ułamka.

Mianownik nie może być ujemny.

Przy wprowadzaniu ułamka liczbowego licznik oddziela się od mianownika znakiem dzielenia: /
Cała część jest oddzielona od ułamka znakiem ampersandu: &
Wejście: 3 i 1/3 - 5 i 6/5z +1/7z^2
Wynik: \(3\frac(1)(3) - 5\frac(6)(5) z + \frac(1)(7)z^2\)

Podczas wprowadzania wyrażenia możesz używać nawiasów. W tym przypadku przy rozwiązywaniu równania kwadratowego wprowadzone wyrażenie jest najpierw upraszczane.
Na przykład: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Decydować

Odkryto, że niektóre skrypty niezbędne do rozwiązania tego problemu nie zostały załadowane i program może nie działać.
Być może masz włączonego AdBlocka.
W takim przypadku wyłącz ją i odśwież stronę.

JavaScript jest wyłączony w Twojej przeglądarce.
Aby rozwiązanie się pojawiło, musisz włączyć JavaScript.
Poniżej znajdują się instrukcje dotyczące włączania JavaScript w Twojej przeglądarce.

Ponieważ Chętnych do rozwiązania problemu jest wiele, Twoja prośba została umieszczona w kolejce.
Za kilka sekund rozwiązanie pojawi się poniżej.
Proszę czekać sekunda...


Jeśli ty zauważył błąd w rozwiązaniu, możesz napisać o tym w Formularzu opinii.
Nie zapomnij wskaż, które zadanie ty decydujesz co wpisz w pola.



Nasze gry, puzzle, emulatory:

Trochę teorii.

Równanie kwadratowe i jego pierwiastki. Niekompletne równania kwadratowe

Każde z równań
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac(4)(9)=0 \)
wygląda jak
\(ax^2+bx+c=0, \)
gdzie x jest zmienną, a, b i c są liczbami.
W pierwszym równaniu a = -1, b = 6 i c = 1,4, w drugim a = 8, b = -7 i c = 0, w trzecim a = 1, b = 0 i c = 4/9. Takie równania nazywane są równania kwadratowe.

Definicja.
Równanie kwadratowe nazywa się równaniem w postaci ax 2 +bx+c=0, gdzie x jest zmienną, a, b i c to niektóre liczby, a \(a \neq 0 \).

Liczby a, b i c są współczynnikami równania kwadratowego. Liczbę a nazywa się pierwszym współczynnikiem, liczba b jest drugim współczynnikiem, a liczba c jest wyrazem wolnym.

W każdym z równań postaci ax 2 +bx+c=0, gdzie \(a\neq 0\), największą potęgą zmiennej x jest kwadrat. Stąd nazwa: równanie kwadratowe.

Należy zauważyć, że równanie kwadratowe nazywane jest również równaniem drugiego stopnia, ponieważ jego lewa strona jest wielomianem drugiego stopnia.

Nazywa się równanie kwadratowe, w którym współczynnik x 2 jest równy 1 dane równanie kwadratowe. Na przykład podane równania kwadratowe są równaniami
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Jeżeli w równaniu kwadratowym ax 2 +bx+c=0 chociaż jeden ze współczynników b lub c jest równy zero, to takie równanie nazywa się niekompletne równanie kwadratowe. Zatem równania -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 są niepełnymi równaniami kwadratowymi. W pierwszym z nich b=0, w drugim c=0, w trzecim b=0 i c=0.

Istnieją trzy typy niekompletnych równań kwadratowych:
1) ax 2 +c=0, gdzie \(c \neq 0 \);
2) ax 2 +bx=0, gdzie \(b \neq 0 \);
3) topór 2 =0.

Rozważmy rozwiązanie równań każdego z tych typów.

Aby rozwiązać niepełne równanie kwadratowe o postaci ax 2 +c=0 dla \(c \neq 0 \), przesuń jego wolny wyraz na prawą stronę i podziel obie strony równania przez a:
\(x^2 = -\frac(c)(a) \Rightarrow x_(1,2) = \pm \sqrt( -\frac(c)(a)) \)

Ponieważ \(c \neq 0 \), to \(-\frac(c)(a) \neq 0 \)

Jeśli \(-\frac(c)(a)>0\), to równanie ma dwa pierwiastki.

Jeśli \(-\frac(c)(a) Aby rozwiązać niepełne równanie kwadratowe postaci ax 2 +bx=0 z \(b \neq 0 \) uwzględnij jego lewą stronę i otrzymaj równanie
\(x(ax+b)=0 \Rightarrow \left\( \begin(array)(l) x=0 \\ ax+b=0 \end(array) \right. \Rightarrow \left\( \begin (tablica)(l) x=0 \\ x=-\frac(b)(a) \end(tablica) \right. \)

Oznacza to, że niepełne równanie kwadratowe w postaci ax 2 +bx=0 dla \(b \neq 0 \) zawsze ma dwa pierwiastki.

Niekompletne równanie kwadratowe w postaci ax 2 = 0 jest równoważne równaniu x 2 = 0 i dlatego ma pojedynczy pierwiastek 0.

Wzór na pierwiastki równania kwadratowego

Zastanówmy się teraz, jak rozwiązać równania kwadratowe, w których oba współczynniki niewiadomych i składnik wolny są różne od zera.

Rozwiążmy równanie kwadratowe w formie ogólnej i w rezultacie otrzymamy wzór na pierwiastki. Wzór ten można następnie wykorzystać do rozwiązania dowolnego równania kwadratowego.

Rozwiąż równanie kwadratowe ax 2 +bx+c=0

Dzieląc obie strony przez a, otrzymujemy równoważne zredukowane równanie kwadratowe
\(x^2+\frac(b)(a)x +\frac(c)(a)=0 \)

Przekształćmy to równanie, wybierając kwadrat dwumianu:
\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2- \left(\frac(b)(2a)\right)^ 2 + \frac(c)(a) = 0 \Strzałka w prawo \)

\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2 = \left(\frac(b)(2a)\right)^ 2 - \frac(c)(a) \Rightarrow \) \(\left(x+\frac(b)(2a)\right)^2 = \frac(b^2)(4a^2) - \frac( c)(a) \Rightarrow \left(x+\frac(b)(2a)\right)^2 = \frac(b^2-4ac)(4a^2) \Rightarrow \) \(x+\frac(b )(2a) = \pm \sqrt( \frac(b^2-4ac)(4a^2) ) \Rightarrow x = -\frac(b)(2a) + \frac( \pm \sqrt(b^2 -4ac) )(2a) \Strzałka w prawo \) \(x = \frac( -b \pm \sqrt(b^2-4ac) )(2a) \)

Radykalne wyrażenie nazywa się dyskryminator równania kwadratowego ax 2 +bx+c=0 („różniący” po łacinie – dyskryminator). Jest on oznaczony literą D, tj.
\(D = b^2-4ac\)

Teraz, stosując notację dyskryminacyjną, przepisujemy wzór na pierwiastki równania kwadratowego:
\(x_(1,2) = \frac( -b \pm \sqrt(D) )(2a) \), gdzie \(D= b^2-4ac \)

To oczywiste, że:
1) Jeżeli D>0, to równanie kwadratowe ma dwa pierwiastki.
2) Jeżeli D=0, to równanie kwadratowe ma jeden pierwiastek \(x=-\frac(b)(2a)\).
3) Jeżeli D Zatem, w zależności od wartości wyróżnika, równanie kwadratowe może mieć dwa pierwiastki (dla D > 0), jeden pierwiastek (dla D = 0) lub nie mieć pierwiastków (dla D. Przy rozwiązywaniu równania kwadratowego za pomocą tego formułę, zaleca się wykonanie następującego sposobu:
1) obliczyć dyskryminator i porównać go z zerem;
2) jeżeli wyróżnik jest dodatni lub równy zeru, to stosujemy wzór na pierwiastek, jeżeli dyskryminator jest ujemny, to zapisujemy, że nie ma pierwiastków.

Twierdzenie Viety

Dane równanie kwadratowe ax 2 -7x+10=0 ma pierwiastki 2 i 5. Suma pierwiastków wynosi 7, a iloczyn wynosi 10. Widzimy, że suma pierwiastków jest równa drugiemu współczynnikowi wziętemu z przeciwnej strony znak, a iloczyn pierwiastków jest równy członowi swobodnemu. Każde zredukowane równanie kwadratowe, które ma pierwiastki, ma tę właściwość.

Suma pierwiastków powyższego równania kwadratowego jest równa drugiemu współczynnikowi przyjętemu z przeciwnym znakiem, a iloczyn pierwiastków jest równy członowi swobodnemu.

Te. Twierdzenie Viety stwierdza, że ​​pierwiastki x 1 i x 2 zredukowanego równania kwadratowego x 2 +px+q=0 mają właściwość:
\(\left\( \begin(array)(l) x_1+x_2=-p \\ x_1 \cdot x_2=q \end(array) \right. \)

Kontynuując temat „Rozwiązywanie równań”, materiał w tym artykule wprowadzi Cię w równania kwadratowe.

Przyjrzyjmy się wszystkiemu szczegółowo: istocie i zapisowi równania kwadratowego, zdefiniuj towarzyszące terminy, przeanalizuj schemat rozwiązywania równań niepełnych i pełnych, zapoznaj się ze wzorem pierwiastków i dyskryminatora, ustal połączenia między pierwiastkami i współczynnikami, i oczywiście podamy wizualne rozwiązanie praktycznych przykładów.

Yandex.RTB R-A-339285-1

Równanie kwadratowe, jego rodzaje

Definicja 1

Równanie kwadratowe jest równaniem zapisanym jako za x 2 + b x + do = 0, Gdzie X– zmienna, a, b i C– kilka liczb, podczas gdy A nie jest zerem.

Często równania kwadratowe nazywane są również równaniami drugiego stopnia, ponieważ w istocie równanie kwadratowe jest równaniem algebraicznym drugiego stopnia.

Podajmy przykład ilustrujący podaną definicję: 9 x 2 + 16 x + 2 = 0 ; 7, 5 x 2 + 3, 1 x + 0, 11 = 0 itd. Są to równania kwadratowe.

Definicja 2

Liczby a, b i C są współczynnikami równania kwadratowego za x 2 + b x + do = 0, natomiast współczynnik A nazywany jest pierwszym lub starszym lub współczynnikiem przy x 2, b - drugim współczynnikiem lub współczynnikiem przy X, A C nazywany wolnym członkiem.

Na przykład w równaniu kwadratowym 6 x 2 - 2 x - 11 = 0 współczynnik wiodący wynosi 6, drugi współczynnik − 2 , a wolny termin jest równy − 11 . Zwróćmy uwagę na fakt, że gdy współczynniki B i/lub c są ujemne, wówczas stosuje się skróconą formę 6 x 2 - 2 x - 11 = 0, ale nie 6 x 2 + (- 2) x + (- 11) = 0.

Wyjaśnijmy również ten aspekt: ​​jeśli współczynniki A i/lub B równy 1 Lub − 1 , wówczas nie mogą brać wyraźnego udziału w pisaniu równania kwadratowego, co tłumaczy się osobliwościami pisania wskazanych współczynników liczbowych. Na przykład w równaniu kwadratowym y 2 - y + 7 = 0 współczynnik wiodący wynosi 1, a drugi współczynnik − 1 .

Równania kwadratowe zredukowane i nieredukowane

Ze względu na wartość pierwszego współczynnika równania kwadratowe dzielimy na zredukowane i nieredukowane.

Definicja 3

Zredukowane równanie kwadratowe jest równaniem kwadratowym, w którym współczynnik wiodący wynosi 1. Dla innych wartości współczynnika wiodącego równanie kwadratowe jest nieredukowane.

Podajmy przykłady: równania kwadratowe x 2 − 4 · x + 3 = 0, x 2 − x − 4 5 = 0 są redukowane, w każdym z nich współczynnik wiodący wynosi 1.

9 x 2 - x - 2 = 0- nieredukowane równanie kwadratowe, od którego różni się pierwszy współczynnik 1 .

Każde niezredukowane równanie kwadratowe można przekształcić w równanie zredukowane, dzieląc obie strony przez pierwszy współczynnik (transformacja równoważna). Przekształcone równanie będzie miało te same pierwiastki co podane równanie niezredukowane lub też nie będzie miało pierwiastków.

Rozpatrzenie konkretnego przykładu pozwoli nam wyraźnie wykazać przejście od nieredukowanego równania kwadratowego do zredukowanego.

Przykład 1

Biorąc pod uwagę równanie 6 x 2 + 18 x - 7 = 0 . Konieczne jest przekształcenie pierwotnego równania do postaci zredukowanej.

Rozwiązanie

Zgodnie z powyższym schematem obie strony pierwotnego równania dzielimy przez wiodący współczynnik 6. Następnie otrzymujemy: (6 x 2 + 18 x - 7): 3 = 0: 3, a to jest to samo co: (6 x 2): 3 + (18 x): 3 - 7: 3 = 0 i dalej: (6: 6) x 2 + (18: 6) x - 7: 6 = 0. Stąd: x 2 + 3 x - 1 1 6 = 0 . W ten sposób otrzymuje się równanie równoważne podanemu.

Odpowiedź: x 2 + 3 x - 1 1 6 = 0 .

Równania kwadratowe zupełne i niezupełne

Przejdźmy do definicji równania kwadratowego. W nim to określiliśmy a ≠ 0. Podobny warunek jest konieczny dla równania za x 2 + b x + do = 0 był dokładnie kwadratowy, gdyż o godz a = 0 zasadniczo przekształca się w równanie liniowe b x + do = 0.

W przypadku, gdy współczynniki B I C są równe zeru (co jest możliwe zarówno indywidualnie, jak i łącznie), równanie kwadratowe nazywa się niepełnym.

Definicja 4

Niekompletne równanie kwadratowe- takie równanie kwadratowe za x 2 + b x + do = 0, gdzie co najmniej jeden ze współczynników B I C(lub oba) wynosi zero.

Pełne równanie kwadratowe– równanie kwadratowe, w którym wszystkie współczynniki liczbowe nie są równe zero.

Porozmawiajmy, dlaczego rodzaje równań kwadratowych mają dokładnie te nazwy.

Gdy b = 0, równanie kwadratowe przyjmuje postać za x 2 + 0 x + do = 0, czyli to samo co za x 2 + do = 0. Na c = 0 równanie kwadratowe zapisuje się jako za x 2 + b x + 0 = 0, co jest równoważne za x 2 + b x = 0. Na b = 0 I c = 0 równanie przybierze postać a x 2 = 0. Otrzymane przez nas równania różnią się od pełnego równania kwadratowego tym, że ich lewa strona nie zawiera ani wyrazu ze zmienną x, ani wyrazu wolnego, ani obu. Właściwie to właśnie ten fakt dał nazwę tego typu równaniom – niepełne.

Na przykład x 2 + 3 x + 4 = 0 i - 7 x 2 - 2 x + 1, 3 = 0 są pełnymi równaniami kwadratowymi; x 2 = 0, - 5 x 2 = 0; 11 x 2 + 2 = 0, − x 2 − 6 x = 0 – niepełne równania kwadratowe.

Rozwiązywanie niepełnych równań kwadratowych

Podana powyżej definicja pozwala wyróżnić następujące typy niepełnych równań kwadratowych:

  • a x 2 = 0, to równanie odpowiada współczynnikom b = 0 i c = 0;
  • a · x 2 + do = 0 przy b = 0 ;
  • a · x 2 + b · x = 0 przy c = 0.

Rozważmy kolejno rozwiązanie każdego rodzaju niepełnego równania kwadratowego.

Rozwiązanie równania a x 2 =0

Jak wspomniano powyżej, równanie to odpowiada współczynnikom B I C, równy zeru. Równanie a x 2 = 0 można przekształcić w równoważne równanie x2 = 0, które otrzymujemy dzieląc obie strony pierwotnego równania przez liczbę A, nierówny zero. Oczywistym faktem jest pierwiastek równania x2 = 0 to jest zero, ponieważ 0 2 = 0 . Równanie to nie ma innych pierwiastków, co można wytłumaczyć właściwościami stopnia: dla dowolnej liczby P, nierówny zero, nierówność jest prawdziwa p2 > 0, z czego wynika, że ​​kiedy p ≠ 0 równość p2 = 0 nigdy nie zostanie osiągnięty.

Definicja 5

Zatem dla niepełnego równania kwadratowego a x 2 = 0 istnieje pojedynczy pierwiastek x = 0.

Przykład 2

Na przykład rozwiążmy niepełne równanie kwadratowe − 3 x 2 = 0. Jest to równoważne równaniu x2 = 0, jego jedynym korzeniem jest x = 0, to pierwotne równanie ma jeden pierwiastek – zero.

W skrócie rozwiązanie jest zapisane w następujący sposób:

− 3 x 2 = 0, x 2 = 0, x = 0.

Rozwiązanie równania a x 2 + c = 0

Następne w kolejce jest rozwiązanie niepełnych równań kwadratowych, gdzie b = 0, c ≠ 0, czyli równania postaci za x 2 + do = 0. Przekształćmy to równanie, przesuwając wyraz z jednej strony równania na drugą, zmieniając znak na przeciwny i dzieląc obie strony równania przez liczbę różną od zera:

  • przenosić C po prawej stronie, co daje równanie za x 2 = - do;
  • podziel obie strony równania przez A, kończymy na x = - c a .

Nasze przekształcenia są równoważne, zatem otrzymane równanie jest również równoważne pierwotnemu, co pozwala na wyciągnięcie wniosków na temat pierwiastków równania. Od jakich wartości A I C wartość wyrażenia - c a zależy: może mieć znak minus (na przykład if a = 1 I c = 2, następnie - c a = - 2 1 = - 2) lub znak plus (na przykład if za = - 2 I c = 6, następnie - do za = - 6 - 2 = 3); to nie jest zero, ponieważ c ≠ 0. Zatrzymajmy się bardziej szczegółowo nad sytuacjami, gdy - ok< 0 и - c a > 0 .

W przypadku gdy - ok< 0 , уравнение x 2 = - c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при - c a < 0 ни для какого числа P równość p 2 = - c a nie może być prawdziwa.

Wszystko jest inne, gdy - c a > 0: pamiętaj o pierwiastku kwadratowym i stanie się oczywiste, że pierwiastkiem równania x 2 = - c a będzie liczbą - c a, ponieważ - c a 2 = - c a. Nietrudno zrozumieć, że liczba - - c a jest także pierwiastkiem równania x 2 = - c a: rzeczywiście - - c a 2 = - c a.

Równanie nie będzie miało innych pierwiastków. Możemy to wykazać za pomocą metody sprzeczności. Na początek zdefiniujmy oznaczenia pierwiastków znalezione powyżej jako x 1 I − x 1. Załóżmy, że równanie x 2 = - c a również ma pierwiastek x 2, co różni się od korzeni x 1 I − x 1. Wiemy to podstawiając do równania X jego pierwiastki, przekształcamy równanie w uczciwą równość liczbową.

Dla x 1 I − x 1 piszemy: x 1 2 = - c a , i dla x 2- x 2 2 = - do za . Bazując na własnościach równości liczbowych, odejmujemy jeden poprawny wyraz równości od drugiego, co da nam: x 1 2 - x 2 2 = 0. Używamy właściwości operacji na liczbach, aby przepisać ostatnią równość jako (x 1 - x 2) · (x 1 + x 2) = 0. Wiadomo, że iloczyn dwóch liczb wynosi zero wtedy i tylko wtedy, gdy co najmniej jedna z liczb jest równa zero. Z powyższego wynika, że x 1 - x 2 = 0 i/lub x 1 + x 2 = 0, czyli to samo x2 = x1 i/lub x 2 = - x 1. Powstała oczywista sprzeczność, ponieważ początkowo uznano, że pierwiastek równania x 2 różni się od x 1 I − x 1. Udowodniliśmy więc, że równanie nie ma innych pierwiastków niż x = - c a i x = - - c a.

Podsumujmy wszystkie powyższe argumenty.

Definicja 6

Niekompletne równanie kwadratowe za x 2 + do = 0 jest równoważne równaniu x 2 = - c a, które:

  • nie będzie miał korzeni w - ok< 0 ;
  • będzie miał dwa pierwiastki x = - c a i x = - - c a dla - c a > 0.

Podajmy przykłady rozwiązywania równań za x 2 + do = 0.

Przykład 3

Biorąc pod uwagę równanie kwadratowe 9 x 2 + 7 = 0. Konieczne jest znalezienie rozwiązania.

Rozwiązanie

Przesuńmy wolny wyraz na prawą stronę równania, wtedy równanie przyjmie postać 9x2 = - 7.
Podzielmy obie strony otrzymanego równania przez 9 , dochodzimy do x 2 = - 7 9 . Po prawej stronie widzimy liczbę ze znakiem minus, co oznacza: dane równanie nie ma pierwiastków. Następnie oryginalne niekompletne równanie kwadratowe 9 x 2 + 7 = 0 nie będzie mieć korzeni.

Odpowiedź: równanie 9 x 2 + 7 = 0 nie ma korzeni.

Przykład 4

Trzeba rozwiązać równanie − x 2 + 36 = 0.

Rozwiązanie

Przesuńmy 36 na prawą stronę: − x 2 = − 36.
Podzielmy obie części przez − 1 , otrzymujemy x2 = 36. Po prawej stronie znajduje się liczba dodatnia, z której możemy to wywnioskować x = 36 lub x = - 36 .
Wyodrębnijmy pierwiastek i zapiszmy wynik końcowy: niepełne równanie kwadratowe − x 2 + 36 = 0 ma dwa korzenie x=6 Lub x = - 6.

Odpowiedź: x=6 Lub x = - 6.

Rozwiązanie równania a x 2 +b x=0

Przeanalizujmy trzeci typ niepełnych równań kwadratowych, kiedy c = 0. Aby znaleźć rozwiązanie niepełnego równania kwadratowego za x 2 + b x = 0, zastosujemy metodę faktoryzacji. Rozłóżmy wielomian znajdujący się po lewej stronie równania na czynniki, usuwając wspólny czynnik z nawiasów X. Ten krok umożliwi przekształcenie pierwotnego niepełnego równania kwadratowego na jego odpowiednik x (a x + b) = 0. A to równanie z kolei jest równoważne zbiorowi równań x = 0 I a x + b = 0. Równanie a x + b = 0 liniowy i jego pierwiastek: x = - b za.

Definicja 7

Zatem niepełne równanie kwadratowe za x 2 + b x = 0 będzie miał dwa korzenie x = 0 I x = - b za.

Wzmocnijmy materiał przykładem.

Przykład 5

Konieczne jest znalezienie rozwiązania równania 2 3 · x 2 - 2 2 7 · x = 0.

Rozwiązanie

Wyciągniemy to X poza nawiasami otrzymujemy równanie x · 2 3 · x - 2 2 7 = 0 . To równanie jest równoważne równaniom x = 0 i 2 3 x - 2 2 7 = 0. Teraz powinieneś rozwiązać powstałe równanie liniowe: 2 3 · x = 2 2 7, x = 2 2 7 2 3.

Zapisz krótko rozwiązanie równania w następujący sposób:

2 3 x 2 - 2 2 7 x = 0 x 2 3 x - 2 2 7 = 0

x = 0 lub 2 3 x - 2 2 7 = 0

x = 0 lub x = 3 3 7

Odpowiedź: x = 0, x = 3 3 7.

Dyskryminator, wzór na pierwiastki równania kwadratowego

Aby znaleźć rozwiązania równań kwadratowych, istnieje wzór na pierwiastek:

Definicja 8

x = - b ± D 2 · a, gdzie re = b 2 - 4 za do– tzw. dyskryminator równania kwadratowego.

Zapisanie x = - b ± D 2 · a zasadniczo oznacza, że ​​x 1 = - b + D 2 · a, x 2 = - b - D 2 · a.

Przydatne byłoby zrozumienie, w jaki sposób wyprowadzono tę formułę i jak ją zastosować.

Wyprowadzenie wzoru na pierwiastki równania kwadratowego

Stańmy przed zadaniem rozwiązania równania kwadratowego za x 2 + b x + do = 0. Przeprowadźmy szereg równoważnych przekształceń:

  • podziel obie strony równania przez liczbę A, różny od zera, otrzymujemy następujące równanie kwadratowe: x 2 + b a · x + c a = 0 ;
  • Wybierzmy cały kwadrat po lewej stronie wynikowego równania:
    x 2 + b za · x + do a = x 2 + 2 · b 2 · a · x + b 2 · za 2 - b 2 · za 2 + do a = = x + b 2 · za 2 - b 2 · za 2 + ok
    Następnie równanie przyjmie postać: x + b 2 · a 2 - b 2 · a 2 + c a = 0;
  • Teraz można przenieść dwa ostatnie wyrazy na prawą stronę, zmieniając znak na przeciwny, po czym otrzymujemy: x + b 2 · a 2 = b 2 · a 2 - c a ;
  • Na koniec przekształcamy wyrażenie zapisane po prawej stronie ostatniej równości:
    b 2 · za 2 - do za = b 2 4 · za 2 - do za = b 2 4 · za 2 - 4 · za · do 4 · za 2 = b 2 - 4 · za · do 4 · za 2 .

W ten sposób dochodzimy do równania x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 , równoważne pierwotnemu równaniu za x 2 + b x + do = 0.

Rozwiązanie takich równań sprawdziliśmy w poprzednich akapitach (rozwiązywanie niepełnych równań kwadratowych). Zdobyte doświadczenie pozwala wyciągnąć wniosek dotyczący pierwiastków równania x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2:

  • z b 2 - 4 a c 4 a 2< 0 уравнение не имеет действительных решений;
  • gdy b 2 - 4 · a · do 4 · a 2 = 0 równanie ma postać x + b 2 · a 2 = 0, wtedy x + b 2 · a = 0.

Stąd oczywisty jest jedyny pierwiastek x = - b 2 · a;

  • dla b 2 - 4 · a · c 4 · a 2 > 0 prawdziwe będzie: x + b 2 · a = b 2 - 4 · a · c 4 · a 2 lub x = b 2 · a - b 2 - 4 · a · do 4 · za 2 , co jest tym samym co x + - b 2 · a = b 2 - 4 · a · do 4 · za 2 lub x = - b 2 · a - b 2 - 4 · a · do 4 · za 2 , tj. równanie ma dwa pierwiastki.

Można stwierdzić, że obecność lub brak pierwiastków równania x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 (a zatem pierwotne równanie) zależy od znaku wyrażenia b 2 - 4 · a · c 4 · a 2 zapisane po prawej stronie. A znak tego wyrażenia jest określony przez znak licznika (mianownik 4 za 2 zawsze będzie dodatni), czyli znak wyrażenia b 2 - 4 za do. To wyrażenie b 2 - 4 za do podana jest nazwa - wyróżnik równania kwadratowego i litera D jest zdefiniowana jako jego oznaczenie. Tutaj możesz zapisać istotę wyróżnika - na podstawie jego wartości i znaku można stwierdzić, czy równanie kwadratowe będzie miało pierwiastki rzeczywiste, a jeśli tak, to jaka jest liczba pierwiastków - jeden czy dwa.

Wróćmy do równania x + b 2 · a 2 = b 2 - 4 · a · do 4 · a 2 . Przepiszmy to używając notacji dyskryminacyjnej: x + b 2 · a 2 = D 4 · a 2 .

Sformułujmy jeszcze raz nasze wnioski:

Definicja 9

  • Na D< 0 równanie nie ma rzeczywistych pierwiastków;
  • Na D=0 równanie ma pojedynczy pierwiastek x = - b 2 · a ;
  • Na D > 0 równanie ma dwa pierwiastki: x = - b 2 · a + D 4 · a 2 lub x = - b 2 · a - D 4 · a 2. Bazując na własnościach rodników, pierwiastki te można zapisać w postaci: x = - b 2 · a + D 2 · a lub - b 2 · a - D 2 · a. A kiedy otworzymy moduły i doprowadzimy ułamki do wspólnego mianownika, otrzymamy: x = - b + D 2 · a, x = - b - D 2 · a.

Zatem wynikiem naszego rozumowania było wyprowadzenie wzoru na pierwiastki równania kwadratowego:

x = - b + D 2 a, x = - b - D 2 a, dyskryminator D obliczone według wzoru re = b 2 - 4 za do.

Wzory te umożliwiają wyznaczenie obu pierwiastków rzeczywistych, gdy dyskryminator jest większy od zera. Gdy dyskryminator wynosi zero, zastosowanie obu wzorów da ten sam pierwiastek, co jedyne rozwiązanie równania kwadratowego. W przypadku, gdy dyskryminator jest ujemny, jeśli spróbujemy skorzystać ze wzoru na pierwiastek kwadratowy, staniemy przed koniecznością obliczenia pierwiastka kwadratowego z liczby ujemnej, co wyprowadzi nas poza zakres liczb rzeczywistych. W przypadku ujemnego dyskryminatora równanie kwadratowe nie będzie miało rzeczywistych pierwiastków, ale możliwa jest para złożonych pierwiastków sprzężonych, określonych tymi samymi wzorami pierwiastkowymi, które otrzymaliśmy.

Algorytm rozwiązywania równań kwadratowych za pomocą wzorów pierwiastkowych

Możliwe jest rozwiązanie równania kwadratowego poprzez natychmiastowe użycie wzoru na pierwiastek, ale zwykle robi się to, gdy konieczne jest znalezienie złożonych pierwiastków.

W większości przypadków oznacza to zwykle poszukiwanie nie złożonych, ale rzeczywistych pierwiastków równania kwadratowego. Wtedy optymalnie jest przed użyciem wzorów na pierwiastki równania kwadratowego najpierw wyznaczyć dyskryminator i upewnić się, że nie jest on ujemny (w przeciwnym razie dojdziemy do wniosku, że równanie nie ma pierwiastków rzeczywistych), a następnie przystąpić do obliczania wartość korzeni.

Powyższe rozumowanie pozwala na sformułowanie algorytmu rozwiązywania równania kwadratowego.

Definicja 10

Aby rozwiązać równanie kwadratowe za x 2 + b x + do = 0, niezbędny:

  • według formuły re = b 2 - 4 za do znajdź wartość dyskryminującą;
  • w D< 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
  • dla D = 0 znajdź jedyny pierwiastek równania, korzystając ze wzoru x = - b 2 · a ;
  • dla D > 0 wyznacz dwa pierwiastki rzeczywiste równania kwadratowego korzystając ze wzoru x = - b ± D 2 · a.

Zauważ, że gdy dyskryminator wynosi zero, możesz użyć wzoru x = - b ± D 2 · a, da to taki sam wynik jak wzór x = - b 2 · a.

Spójrzmy na przykłady.

Przykłady rozwiązywania równań kwadratowych

Podajmy rozwiązania przykładów dla różnych wartości dyskryminatora.

Przykład 6

Musimy znaleźć pierwiastki równania x 2 + 2 x - 6 = 0.

Rozwiązanie

Zapiszmy współczynniki liczbowe równania kwadratowego: a = 1, b = 2 i do = - 6. Następnie postępujemy zgodnie z algorytmem, tj. Zacznijmy obliczać dyskryminator, za który podstawimy współczynniki a, b I C do wzoru dyskryminacyjnego: re = b 2 - 4 · za · do = 2 2 - 4 · 1 · (- 6) = 4 + 24 = 28 .

Otrzymujemy więc D > 0, co oznacza, że ​​pierwotne równanie będzie miało dwa pierwiastki rzeczywiste.
Aby je znaleźć, używamy wzoru na pierwiastek x = - b ± D 2 · a i podstawiając odpowiednie wartości, otrzymujemy: x = - 2 ± 28 2 · 1. Uprośćmy powstałe wyrażenie, usuwając czynnik ze znaku pierwiastka, a następnie redukując ułamek:

x = - 2 ± 2 7 2

x = - 2 + 2 7 2 lub x = - 2 - 2 7 2

x = - 1 + 7 lub x = - 1 - 7

Odpowiedź: x = - 1 + 7 ​​​​​​, x = - 1 - 7 .

Przykład 7

Trzeba rozwiązać równanie kwadratowe − 4 x 2 + 28 x − 49 = 0.

Rozwiązanie

Zdefiniujmy dyskryminator: re = 28 2 - 4 · (- 4) · (- 49) = 784 - 784 = 0. Przy tej wartości dyskryminatora pierwotne równanie będzie miało tylko jeden pierwiastek, określony wzorem x = - b 2 · a.

x = - 28 2 (- 4) x = 3,5

Odpowiedź: x = 3,5.

Przykład 8

Trzeba rozwiązać równanie 5 lat 2 + 6 lat + 2 = 0

Rozwiązanie

Współczynniki liczbowe tego równania będą wynosić: a = 5, b = 6 i c = 2. Używamy tych wartości, aby znaleźć dyskryminator: D = b 2 - 4 · a · c = 6 2 - 4 · 5 · 2 = 36 - 40 = - 4 . Obliczony dyskryminator jest ujemny, więc oryginalne równanie kwadratowe nie ma rzeczywistych pierwiastków.

W przypadku, gdy zadaniem jest wskazanie pierwiastków zespolonych, stosujemy wzór na pierwiastek, wykonując działania na liczbach zespolonych:

x = - 6 ± - 4 2 5,

x = - 6 + 2 i 10 lub x = - 6 - 2 i 10,

x = - 3 5 + 1 5 · i lub x = - 3 5 - 1 5 · ja.

Odpowiedź: nie ma prawdziwych korzeni; pierwiastki zespolone są następujące: - 3 5 + 1 5 · i, - 3 5 - 1 5 · i.

W programie szkolnym nie ma standardowego wymogu poszukiwania pierwiastków złożonych, dlatego jeśli w trakcie rozwiązywania dyskryminator okaże się ujemny, od razu zapisuje się odpowiedź, że pierwiastków rzeczywistych nie ma.

Wzór na pierwiastek dla parzystych drugich współczynników

Wzór na pierwiastek x = - b ± D 2 · a (D = b 2 − 4 · a · c) pozwala otrzymać inny, bardziej zwarty wzór, pozwalający znaleźć rozwiązania równań kwadratowych o parzystym współczynniku dla x ( lub ze współczynnikiem postaci 2 · n, na przykład 2 3 lub 14 ln 5 = 2 7 ln 5). Pokażmy, jak wyprowadzony jest ten wzór.

Stańmy przed zadaniem znalezienia rozwiązania równania kwadratowego a · x 2 + 2 · n · x + c = 0 . Postępujemy zgodnie z algorytmem: wyznaczamy dyskryminator D = (2 n) 2 − 4 a c = 4 n 2 − 4 a c = 4 (n 2 − a c), a następnie korzystamy ze wzoru na pierwiastek:

x = - 2 n ± re 2 za, x = - 2 n ± 4 n 2 - za do 2 za, x = - 2 n ± 2 n 2 - za do 2 za, x = - n ± n 2 - a · do za .

Niech wyrażenie n 2 - a · c będzie oznaczone jako D 1 (czasami jest oznaczone jako D "). Następnie wzór na pierwiastki rozważanego równania kwadratowego z drugim współczynnikiem 2 · n przyjmie postać:

x = - n ± re 1 a, gdzie re 1 = n 2 - a · do.

Łatwo zauważyć, że D = 4 · D 1 lub D 1 = D 4. Innymi słowy, D 1 to jedna czwarta dyskryminatora. Oczywiście znak D 1 jest taki sam jak znak D, co oznacza, że ​​znak D 1 może również służyć jako wskaźnik obecności lub braku pierwiastków równania kwadratowego.

Definicja 11

Zatem, aby znaleźć rozwiązanie równania kwadratowego z drugim współczynnikiem 2 n, konieczne jest:

  • znajdź re 1 = n 2 - a · do;
  • w D1< 0 сделать вывод, что действительных корней нет;
  • gdy D 1 = 0, określ jedyny pierwiastek równania za pomocą wzoru x = - n a;
  • dla D 1 > 0 wyznacz dwa pierwiastki rzeczywiste za pomocą wzoru x = - n ± D 1 a.

Przykład 9

Konieczne jest rozwiązanie równania kwadratowego 5 x 2 − 6 x − 32 = 0.

Rozwiązanie

Drugi współczynnik danego równania możemy przedstawić jako 2 · (− 3) . Następnie przepisujemy podane równanie kwadratowe jako 5 x 2 + 2 (− 3) x − 32 = 0, gdzie a = 5, n = − 3 i c = − 32.

Obliczmy czwartą część dyskryminatora: D 1 = n 2 − a · c = (− 3) 2 − 5 · (− 32) = 9 + 160 = 169. Otrzymana wartość jest dodatnia, co oznacza, że ​​równanie ma dwa pierwiastki rzeczywiste. Wyznaczmy je za pomocą odpowiedniego wzoru na pierwiastek:

x = - n ± D 1 a, x = - - 3 ± 169 5, x = 3 ± 13 5,

x = 3 + 13 5 lub x = 3 - 13 5

x = 3 1 5 lub x = - 2

Można by przeprowadzić obliczenia, stosując zwykły wzór na pierwiastki równania kwadratowego, ale w tym przypadku rozwiązanie byłoby bardziej kłopotliwe.

Odpowiedź: x = 3 1 5 lub x = - 2 .

Upraszczanie postaci równań kwadratowych

Czasami można zoptymalizować postać pierwotnego równania, co uprości proces obliczania pierwiastków.

Na przykład równanie kwadratowe 12 x 2 − 4 x − 7 = 0 jest wyraźnie wygodniejsze do rozwiązania niż 1200 x 2 − 400 x − 700 = 0.

Częściej upraszczanie postaci równania kwadratowego odbywa się poprzez pomnożenie lub podzielenie jego obu stron przez określoną liczbę. Na przykład powyżej pokazaliśmy uproszczoną reprezentację równania 1200 x 2 - 400 x - 700 = 0, otrzymaną poprzez podzielenie obu stron przez 100.

Taka transformacja jest możliwa, gdy współczynniki równania kwadratowego nie są liczbami względnie pierwszymi. Następnie zwykle dzielimy obie strony równania przez największy wspólny dzielnik wartości bezwzględnych jego współczynników.

Jako przykład używamy równania kwadratowego 12 x 2 − 42 x + 48 = 0. Określmy GCD wartości bezwzględnych jego współczynników: GCD (12, 42, 48) = GCD(GCD (12, 42), 48) = GCD (6, 48) = 6. Podzielmy obie strony pierwotnego równania kwadratowego przez 6 i otrzymamy równoważne równanie kwadratowe 2 x 2 − 7 x + 8 = 0.

Mnożąc obie strony równania kwadratowego, zwykle pozbywasz się współczynników ułamkowych. W tym przypadku mnożą się przez najmniejszą wspólną wielokrotność mianowników jego współczynników. Przykładowo, jeśli każdą część równania kwadratowego 1 6 x 2 + 2 3 x - 3 = 0 pomnożymy przez LCM (6, 3, 1) = 6, to zostanie to zapisane w prostszej formie x 2 + 4 x - 18 = 0 .

Na koniec zauważamy, że prawie zawsze pozbywamy się minusa przy pierwszym współczynniku równania kwadratowego, zmieniając znaki każdego wyrazu równania, co osiąga się poprzez pomnożenie (lub podzielenie) obu stron przez - 1. Na przykład z równania kwadratowego − 2 x 2 − 3 x + 7 = 0 można przejść do jego uproszczonej wersji 2 x 2 + 3 x − 7 = 0.

Zależność pierwiastków i współczynników

Znany nam już wzór na pierwiastki równań kwadratowych x = - b ± D 2 · a wyraża pierwiastki równania poprzez jego współczynniki liczbowe. Na podstawie tego wzoru mamy możliwość określenia innych zależności pomiędzy pierwiastkami i współczynnikami.

Najbardziej znane i stosowane wzory to twierdzenie Viety:

x 1 + x 2 = - b a i x 2 = do a.

W szczególności dla danego równania kwadratowego sumą pierwiastków jest drugi współczynnik o przeciwnym znaku, a iloczyn pierwiastków jest równy członowi swobodnemu. Na przykład, patrząc na postać równania kwadratowego 3 x 2 - 7 x + 22 = 0, można od razu ustalić, że suma jego pierwiastków wynosi 7 3, a iloczyn pierwiastków wynosi 22 3.

Można także znaleźć wiele innych powiązań pomiędzy pierwiastkami i współczynnikami równania kwadratowego. Na przykład sumę kwadratów pierwiastków równania kwadratowego można wyrazić za pomocą współczynników:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 x 1 x 2 = - b za 2 - 2 do za = b 2 za 2 - 2 do za = b 2 - 2 za do 2.

Jeśli zauważysz błąd w tekście, zaznacz go i naciśnij Ctrl+Enter

Tylko. Według formuł i jasnych, prostych zasad. Na pierwszym etapie

należy doprowadzić dane równanie do postaci standardowej, tj. do formularza:

Jeśli równanie zostało już Ci podane w tej formie, nie musisz wykonywać pierwszego etapu. Najważniejsze jest, aby zrobić to dobrze

wyznaczyć wszystkie współczynniki, A, B I C.

Wzór na znalezienie pierwiastków równania kwadratowego.

Wyrażenie pod znakiem głównym nazywa się dyskryminujący . Jak widać, aby znaleźć X, musimy

Używamy tylko a, b i c. Te. współczynniki z równanie kwadratowe. Po prostu ostrożnie go włóż

wartości a, b i c Obliczamy według tego wzoru. Zastępujemy przez ich oznaki!

Na przykład, w równaniu:

A =1; B = 3; C = -4.

Podstawiamy wartości i piszemy:

Przykład jest prawie rozwiązany:

To jest odpowiedź.

Najczęstszymi błędami są pomyłki z wartościami znaków a, b I Z. A raczej z substytucją

wartości ujemne do wzoru na obliczanie pierwiastków. Tutaj na ratunek przychodzi szczegółowy zapis formuły

z konkretnymi liczbami. Jeśli masz problemy z obliczeniami, zrób to!

Załóżmy, że musimy rozwiązać następujący przykład:

Tutaj A = -6; B = -5; C = -1

Opisujemy wszystko szczegółowo, dokładnie, nie pomijając niczego ze wszystkimi znakami i nawiasami:

Równania kwadratowe często wyglądają nieco inaczej. Na przykład tak:

Teraz zwróć uwagę na praktyczne techniki, które radykalnie zmniejszają liczbę błędów.

Pierwsze spotkanie. Nie bądź leniwy wcześniej rozwiązanie równania kwadratowego doprowadź go do standardowej formy.

Co to znaczy?

Załóżmy, że po wszystkich przekształceniach otrzymamy następujące równanie:

Nie spiesz się z zapisaniem formuły głównej! Prawie na pewno pomylisz szanse a, b i c.

Zbuduj poprawnie przykład. Najpierw X do kwadratu, potem bez kwadratu, a następnie wyraz wolny. Lubię to:

Pozbądź się minusa. Jak? Musimy pomnożyć całe równanie przez -1. Otrzymujemy:

Ale teraz możesz bezpiecznie zapisać wzór na pierwiastki, obliczyć dyskryminator i zakończyć rozwiązywanie przykładu.

Zdecyduj sam. Powinieneś teraz mieć pierwiastki 2 i -1.

Recepcja druga. Sprawdź korzenie! Przez Twierdzenie Viety.

Aby rozwiązać podane równania kwadratowe, tj. jeśli współczynnik

x 2 +bx+c=0,

Następniex 1 x 2 = ok

x 1 + x 2 =−B

Dla pełnego równania kwadratowego, w którym a≠1:

x2+Bx+C=0,

podzielić całe równanie przez A:

Gdzie x 1 I X 2 - pierwiastki równania.

Recepcja trzecia. Jeśli Twoje równanie ma współczynniki ułamkowe, pozbądź się ułamków! Zwielokrotniać

równanie ze wspólnym mianownikiem.

Wniosek. Praktyczne wskazówki:

1. Przed rozwiązaniem doprowadzamy równanie kwadratowe do postaci standardowej i budujemy je Prawidłowy.

2. Jeśli przed kwadratem X znajduje się współczynnik ujemny, eliminujemy go, mnożąc wszystko

równania przez -1.

3. Jeśli współczynniki są ułamkowe, eliminujemy ułamki, mnożąc całe równanie przez odpowiednie

czynnik.

4. Jeśli x kwadrat jest czyste, a jego współczynnik wynosi jeden, rozwiązanie można łatwo sprawdzić