Find the equation of the line sun. General equation of a straight line in a plane

General equation of a straight line:

Particular cases of the general equation of a straight line:

and if C= 0, equation (2) will have the form

Ax + By = 0,

and the straight line defined by this equation passes through the origin, since the coordinates of the origin x = 0, y= 0 satisfy this equation.

b) If in the general equation of the straight line (2) B= 0, then the equation takes the form

Ax + With= 0, or .

Equation does not contain a variable y, and the straight line defined by this equation is parallel to the axis Oy.

c) If in the general equation of the straight line (2) A= 0, then this equation takes the form

By + With= 0, or ;

the equation does not contain a variable x, and the straight line defined by it is parallel to the axis Ox.

It should be remembered: if a straight line is parallel to any coordinate axis, then its equation does not contain a term containing a coordinate of the same name with this axis.

d) When C= 0 and A= 0 equation (2) takes the form By= 0, or y = 0.

This is the axis equation Ox.

e) When C= 0 and B= 0 equation (2) can be written in the form Ax= 0 or x = 0.

This is the axis equation Oy.

Mutual arrangement of straight lines on a plane. Angle between lines on a plane. Condition of parallel lines. The condition of perpendicularity of lines.

l 1 l 2 l 1: A 1 x + B 1 y + C 1 = 0
l 2: A 2 x + B 2 y + C 2 = 0

S 2 S 1 The vectors S 1 and S 2 are called guides for their lines.

The angle between the lines l 1 and l 2 is determined by the angle between the direction vectors.
Theorem 1: cos angle between l 1 and l 2 \u003d cos (l 1; l 2) \u003d

Theorem 2: In order for 2 lines to be equal, it is necessary and sufficient:

Theorem 3: so that 2 lines are perpendicular is necessary and sufficient:

L 1 l 2 ó A 1 A 2 + B 1 B 2 = 0


General equation of the plane and its special cases. Equation of a plane in segments.

General plane equation:

Ax + By + Cz + D = 0

Special cases:

1. D=0 Ax+By+Cz = 0 - the plane passes through the origin

2. С=0 Ax+By+D = 0 – plane || oz

3. В=0 Ax+Cz+d = 0 – plane || OY

4. A=0 By+Cz+D = 0 – plane || OX

5. A=0 and D=0 By+Cz = 0 - the plane passes through OX

6. B=0 and D=0 Ax+Cz = 0 - the plane passes through OY

7. C=0 and D=0 Ax+By = 0 - the plane passes through OZ

Mutual arrangement of planes and straight lines in space:

1. The angle between lines in space is the angle between their direction vectors.

Cos (l 1 ; l 2) = cos(S 1 ; S 2) = =

2. The angle between the planes is determined through the angle between their normal vectors.

Cos (l 1 ; l 2) = cos(N 1 ; N 2) = =

3. The cosine of the angle between a line and a plane can be found through the sin of the angle between the direction vector of the line and the normal vector of the plane.

4. 2 lines || in space when their || vector guides

5. 2 planes || when || normal vectors

6. The concepts of perpendicularity of lines and planes are introduced similarly.


Question #14

Various types of the equation of a straight line on a plane (the equation of a straight line in segments, with a slope, etc.)

Equation of a straight line in segments:
Suppose that in the general equation of a straight line:

1. C \u003d 0 Ah + Wu \u003d 0 - the straight line passes through the origin.

2. a \u003d 0 Wu + C \u003d 0 y \u003d

3. in \u003d 0 Ax + C \u003d 0 x \u003d

4. v \u003d C \u003d 0 Ax \u003d 0 x \u003d 0

5. a \u003d C \u003d 0 Wu \u003d 0 y \u003d 0

The equation of a straight line with a slope:

Any straight line that is not equal to the y-axis (B not = 0) can be written in the following. form:

k = tgα α is the angle between the straight line and the positively directed line ОХ

b - point of intersection of the straight line with the OS axis

Doc-in:

Ax+By+C = 0

Wu \u003d -Ax-C |: B

Equation of a straight line on two points:


Question #16

The finite limit of a function at a point and for x→∞

End limit at point x 0:

The number A is called the limit of the function y \u003d f (x) for x → x 0, if for any E > 0 there is b > 0 such that for x ≠ x 0, satisfying the inequality |x - x 0 |< б, выполняется условие |f(x) - A| < Е

The limit is denoted: = A

End limit at point +∞:

The number A is called the limit of the function y = f(x) for x → + ∞ , if for any E > 0 there exists C > 0 such that for x > C the inequality |f(x) - A|< Е

The limit is denoted: = A

End limit at point -∞:

The number A is called the limit of the function y = f(x) for x→-∞, if for any E< 0 существует С < 0 такое, что при х < -С выполняется неравенство |f(x) - A| < Е

In this article, we will consider the general equation of a straight line in a plane. Let us give examples of constructing the general equation of a straight line if two points of this straight line are known or if one point and the normal vector of this straight line are known. Let us present methods for transforming an equation in general form into canonical and parametric forms.

Let an arbitrary Cartesian rectangular coordinate system be given Oxy. Consider a first degree equation or a linear equation:

Ax+By+C=0, (1)

where A, B, C are some constants, and at least one of the elements A and B different from zero.

We will show that a linear equation in the plane defines a straight line. Let us prove the following theorem.

Theorem 1. In an arbitrary Cartesian rectangular coordinate system on a plane, each straight line can be given by a linear equation. Conversely, each linear equation (1) in an arbitrary Cartesian rectangular coordinate system on the plane defines a straight line.

Proof. It suffices to prove that the line L is determined by a linear equation for any one Cartesian rectangular coordinate system, since then it will be determined by a linear equation and for any choice of Cartesian rectangular coordinate system.

Let a straight line be given on the plane L. We choose a coordinate system so that the axis Ox aligned with the line L, and the axis Oy was perpendicular to it. Then the equation of the line L will take the following form:

y=0. (2)

All points on a line L will satisfy the linear equation (2), and all points outside this straight line will not satisfy the equation (2). The first part of the theorem is proved.

Let a Cartesian rectangular coordinate system be given and let linear equation (1) be given, where at least one of the elements A and B different from zero. Find the locus of points whose coordinates satisfy equation (1). Since at least one of the coefficients A and B is different from zero, then equation (1) has at least one solution M(x 0 ,y 0). (For example, when A≠0, dot M 0 (−C/A, 0) belongs to the given locus of points). Substituting these coordinates into (1) we obtain the identity

Ax 0 +By 0 +C=0. (3)

Let us subtract identity (3) from (1):

A(xx 0)+B(yy 0)=0. (4)

Obviously, equation (4) is equivalent to equation (1). Therefore, it suffices to prove that (4) defines some line.

Since we are considering a Cartesian rectangular coordinate system, it follows from equality (4) that the vector with components ( x−x 0 , y−y 0 ) is orthogonal to the vector n with coordinates ( A,B}.

Consider some line L passing through the point M 0 (x 0 , y 0) and perpendicular to the vector n(Fig.1). Let the point M(x,y) belongs to the line L. Then the vector with coordinates x−x 0 , y−y 0 perpendicular n and equation (4) is satisfied (scalar product of vectors n and equals zero). Conversely, if the point M(x,y) does not lie on a line L, then the vector with coordinates x−x 0 , y−y 0 is not orthogonal to vector n and equation (4) is not satisfied. The theorem has been proven.

Proof. Since lines (5) and (6) define the same line, the normal vectors n 1 ={A 1 ,B 1 ) and n 2 ={A 2 ,B 2) are collinear. Since the vectors n 1 ≠0, n 2 ≠ 0, then there is a number λ , what n 2 =n 1 λ . Hence we have: A 2 =A 1 λ , B 2 =B 1 λ . Let's prove that C 2 =C 1 λ . It is obvious that coinciding lines have a common point M 0 (x 0 , y 0). Multiplying equation (5) by λ and subtracting equation (6) from it we get:

Since the first two equalities from expressions (7) are satisfied, then C 1 λ C 2=0. Those. C 2 =C 1 λ . The remark has been proven.

Note that equation (4) defines the equation of a straight line passing through the point M 0 (x 0 , y 0) and having a normal vector n={A,B). Therefore, if the normal vector of the line and the point belonging to this line are known, then the general equation of the line can be constructed using equation (4).

Example 1. A line passes through a point M=(4,−1) and has a normal vector n=(3, 5). Construct the general equation of a straight line.

Decision. We have: x 0 =4, y 0 =−1, A=3, B=5. To construct the general equation of a straight line, we substitute these values ​​into equation (4):

Answer:

Vector parallel to line L and hence is perpendicular to the normal vector of the line L. Let's construct a normal line vector L, given that the scalar product of vectors n and is equal to zero. We can write, for example, n={1,−3}.

To construct the general equation of a straight line, we use formula (4). Let us substitute into (4) the coordinates of the point M 1 (we can also take the coordinates of the point M 2) and the normal vector n:

Substituting point coordinates M 1 and M 2 in (9) we can make sure that the straight line given by equation (9) passes through these points.

Answer:

Subtract (10) from (1):

We have obtained the canonical equation of a straight line. Vector q={−B, A) is the direction vector of the straight line (12).

See reverse transformation.

Example 3. A straight line in a plane is represented by the following general equation:

Move the second term to the right and divide both sides of the equation by 2 5.

Lesson from the series "Geometric Algorithms"

Hello dear reader!

Today we will start learning algorithms related to geometry. The fact is that there are a lot of Olympiad problems in computer science related to computational geometry, and the solution of such problems often causes difficulties.

In a few lessons, we will consider a number of elementary subproblems on which the solution of most problems of computational geometry is based.

In this lesson, we will write a program for finding the equation of a straight line passing through the given two dots. To solve geometric problems, we need some knowledge of computational geometry. We will devote part of the lesson to getting to know them.

Information from computational geometry

Computational geometry is a branch of computer science that studies algorithms for solving geometric problems.

The initial data for such problems can be a set of points on the plane, a set of segments, a polygon (given, for example, by a list of its vertices in clockwise order), etc.

The result can be either an answer to some question (such as does a point belong to a segment, do two segments intersect, ...), or some geometric object (for example, the smallest convex polygon connecting given points, the area of ​​a polygon, etc.) .

We will consider problems of computational geometry only on the plane and only in the Cartesian coordinate system.

Vectors and coordinates

To apply the methods of computational geometry, it is necessary to translate geometric images into the language of numbers. We assume that a Cartesian coordinate system is given on the plane, in which the direction of rotation counterclockwise is called positive.

Now geometric objects receive an analytical expression. So, to set a point, it is enough to specify its coordinates: a pair of numbers (x; y). A segment can be specified by specifying the coordinates of its ends, a straight line can be specified by specifying the coordinates of a pair of its points.

But the main tool for solving problems will be vectors. Let me remind you, therefore, of some information about them.

Line segment AB, which has a point BUT considered the beginning (point of application), and the point AT- the end is called a vector AB and denoted by either , or a bold lowercase letter, for example a .

To denote the length of a vector (that is, the length of the corresponding segment), we will use the module symbol (for example, ).

An arbitrary vector will have coordinates equal to the difference between the corresponding coordinates of its end and beginning:

,

dots here A and B have coordinates respectively.

For calculations, we will use the concept oriented angle, that is, an angle that takes into account the relative position of the vectors.

Oriented angle between vectors a and b positive if the rotation is away from the vector a to the vector b is done in the positive direction (counterclockwise) and negative in the other case. See fig.1a, fig.1b. It is also said that a pair of vectors a and b positively (negatively) oriented.

Thus, the value of the oriented angle depends on the order of enumeration of the vectors and can take values ​​in the interval .

Many computational geometry problems use the concept of vector (skew or pseudoscalar) products of vectors.

The vector product of vectors a and b is the product of the lengths of these vectors and the sine of the angle between them:

.

Vector product of vectors in coordinates:

The expression on the right is a second-order determinant:

Unlike the definition given in analytic geometry, this is a scalar.

The sign of the cross product determines the position of the vectors relative to each other:

a and b positively oriented.

If the value is , then the pair of vectors a and b negatively oriented.

The cross product of nonzero vectors is zero if and only if they are collinear ( ). This means that they lie on the same line or on parallel lines.

Let's consider some simple tasks necessary for solving more complex ones.

Let's define the equation of a straight line by the coordinates of two points.

The equation of a straight line passing through two different points given by their coordinates.

Let two non-coinciding points are given on the line: with coordinates (x1;y1) and with coordinates (x2; y2). Accordingly, the vector with the beginning at the point and the end at the point has coordinates (x2-x1, y2-y1). If P(x, y) is an arbitrary point on our line, then the coordinates of the vector are (x-x1, y - y1).

With the help of the cross product, the condition for the collinearity of the vectors and can be written as follows:

Those. (x-x1)(y2-y1)-(y-y1)(x2-x1)=0

(y2-y1)x + (x1-x2)y + x1(y1-y2) + y1(x2-x1) = 0

We rewrite the last equation as follows:

ax + by + c = 0, (1)

c = x1(y1-y2) + y1(x2-x1)

So, the straight line can be given by an equation of the form (1).

Task 1. The coordinates of two points are given. Find its representation in the form ax + by + c = 0.

In this lesson, we got acquainted with some information from computational geometry. We solved the problem of finding the equation of the line by the coordinates of two points.

In the next lesson, we will write a program to find the intersection point of two lines given by our equations.

Properties of a straight line in Euclidean geometry.

There are infinitely many lines that can be drawn through any point.

Through any two non-coinciding points, there is only one straight line.

Two non-coincident lines in the plane either intersect at a single point, or are

parallel (follows from the previous one).

In three-dimensional space, there are three options for the relative position of two lines:

  • lines intersect;
  • straight lines are parallel;
  • straight lines intersect.

Straight line- algebraic curve of the first order: in the Cartesian coordinate system, a straight line

is given on the plane by an equation of the first degree (linear equation).

General equation of a straight line.

Definition. Any line in the plane can be given by a first order equation

Ah + Wu + C = 0,

and constant A, B not equal to zero at the same time. This first order equation is called general

straight line equation. Depending on the values ​​of the constants A, B and With The following special cases are possible:

. C = 0, A ≠ 0, B ≠ 0- the line passes through the origin

. A = 0, B ≠0, C ≠0 ( By + C = 0)- straight line parallel to the axis Oh

. B = 0, A ≠ 0, C ≠ 0 ( Ax + C = 0)- straight line parallel to the axis OU

. B = C = 0, A ≠ 0- the line coincides with the axis OU

. A = C = 0, B ≠ 0- the line coincides with the axis Oh

The equation of a straight line can be represented in various forms depending on any given

initial conditions.

Equation of a straight line by a point and a normal vector.

Definition. In a Cartesian rectangular coordinate system, a vector with components (A, B)

perpendicular to the line given by the equation

Ah + Wu + C = 0.

Example. Find the equation of a straight line passing through a point A(1, 2) perpendicular to the vector (3, -1).

Decision. Let's compose at A \u003d 3 and B \u003d -1 the equation of the straight line: 3x - y + C \u003d 0. To find the coefficient C

we substitute the coordinates of the given point A into the resulting expression. We get: 3 - 2 + C = 0, therefore

C = -1. Total: the desired equation: 3x - y - 1 \u003d 0.

Equation of a straight line passing through two points.

Let two points be given in space M 1 (x 1 , y 1 , z 1) and M2 (x 2, y 2 , z 2), then straight line equation,

passing through these points:

If any of the denominators is equal to zero, the corresponding numerator should be set equal to zero. On the

plane, the equation of a straight line written above is simplified:

if x 1 ≠ x 2 and x = x 1, if x 1 = x 2 .

Fraction = k called slope factor straight.

Example. Find the equation of a straight line passing through the points A(1, 2) and B(3, 4).

Decision. Applying the above formula, we get:

Equation of a straight line by a point and a slope.

If the general equation of a straight line Ah + Wu + C = 0 bring to the form:

and designate , then the resulting equation is called

equation of a straight line with slope k.

The equation of a straight line on a point and a directing vector.

By analogy with the point considering the equation of a straight line through the normal vector, you can enter the task

a straight line through a point and a direction vector of a straight line.

Definition. Every non-zero vector (α 1 , α 2), whose components satisfy the condition

Aα 1 + Bα 2 = 0 called direction vector of the straight line.

Ah + Wu + C = 0.

Example. Find the equation of a straight line with direction vector (1, -1) and passing through point A(1, 2).

Decision. We will look for the equation of the desired straight line in the form: Ax + By + C = 0. According to the definition,

coefficients must satisfy the conditions:

1 * A + (-1) * B = 0, i.e. A = B.

Then the equation of a straight line has the form: Ax + Ay + C = 0, or x + y + C / A = 0.

at x=1, y=2 we get C/ A = -3, i.e. desired equation:

x + y - 3 = 0

Equation of a straight line in segments.

If in the general equation of the straight line Ah + Wu + C = 0 C≠0, then, dividing by -C, we get:

or , where

The geometric meaning of the coefficients is that the coefficient a is the coordinate of the intersection point

straight with axle Oh, a b- the coordinate of the point of intersection of the line with the axis OU.

Example. The general equation of a straight line is given x - y + 1 = 0. Find the equation of this straight line in segments.

C \u003d 1, , a \u003d -1, b \u003d 1.

Normal equation of a straight line.

If both sides of the equation Ah + Wu + C = 0 divide by number , which is called

normalizing factor, then we get

xcosφ + ysinφ - p = 0 -normal equation of a straight line.

The sign ± of the normalizing factor must be chosen so that μ * C< 0.

R- the length of the perpendicular dropped from the origin to the line,

a φ - the angle formed by this perpendicular with the positive direction of the axis Oh.

Example. Given the general equation of a straight line 12x - 5y - 65 = 0. Required to write various types of equations

this straight line.

The equation of this straight line in segments:

The equation of this line with slope: (divide by 5)

Equation of a straight line:

cos φ = 12/13; sin φ= -5/13; p=5.

It should be noted that not every straight line can be represented by an equation in segments, for example, straight lines,

parallel to the axes or passing through the origin.

Angle between lines on a plane.

Definition. If two lines are given y \u003d k 1 x + b 1, y \u003d k 2 x + b 2, then the acute angle between these lines

will be defined as

Two lines are parallel if k 1 = k 2. Two lines are perpendicular

if k 1 \u003d -1 / k 2 .

Theorem.

Direct Ah + Wu + C = 0 and A 1 x + B 1 y + C 1 \u003d 0 are parallel when the coefficients are proportional

A 1 \u003d λA, B 1 \u003d λB. If also С 1 \u003d λС, then the lines coincide. Coordinates of the point of intersection of two lines

are found as a solution to the system of equations of these lines.

The equation of a line passing through a given point is perpendicular to a given line.

Definition. A line passing through a point M 1 (x 1, y 1) and perpendicular to the line y = kx + b

represented by the equation:

The distance from a point to a line.

Theorem. If a point is given M(x 0, y 0), then the distance to the line Ah + Wu + C = 0 defined as:

Proof. Let the point M 1 (x 1, y 1)- the base of the perpendicular dropped from the point M for a given

direct. Then the distance between the points M and M 1:

(1)

Coordinates x 1 and 1 can be found as a solution to the system of equations:

The second equation of the system is the equation of a straight line passing through a given point M 0 perpendicularly

given line. If we transform the first equation of the system to the form:

A(x - x 0) + B(y - y 0) + Ax 0 + By 0 + C = 0,

then, solving, we get:

Substituting these expressions into equation (1), we find:

The theorem has been proven.

Let the straight line pass through the points M 1 (x 1; y 1) and M 2 (x 2; y 2). The equation of a straight line passing through the point M 1 has the form y- y 1 \u003d k (x - x 1), (10.6)

where k - still unknown coefficient.

Since the straight line passes through the point M 2 (x 2 y 2), then the coordinates of this point must satisfy equation (10.6): y 2 -y 1 \u003d k (x 2 -x 1).

From here we find Substituting the found value k into equation (10.6), we obtain the equation of a straight line passing through the points M 1 and M 2:

It is assumed that in this equation x 1 ≠ x 2, y 1 ≠ y 2

If x 1 \u003d x 2, then the straight line passing through the points M 1 (x 1, y I) and M 2 (x 2, y 2) is parallel to the y-axis. Its equation is x = x 1 .

If y 2 \u003d y I, then the equation of the straight line can be written as y \u003d y 1, the straight line M 1 M 2 is parallel to the x-axis.

Equation of a straight line in segments

Let the straight line intersect the Ox axis at the point M 1 (a; 0), and the Oy axis - at the point M 2 (0; b). The equation will take the form:
those.
. This equation is called the equation of a straight line in segments, because the numbers a and b indicate which segments the straight line cuts off on the coordinate axes.

Equation of a straight line passing through a given point perpendicular to a given vector

Let's find the equation of a straight line passing through a given point Mo (x O; y o) perpendicular to a given non-zero vector n = (A; B).

Take an arbitrary point M(x; y) on the straight line and consider the vector M 0 M (x - x 0; y - y o) (see Fig. 1). Since the vectors n and M o M are perpendicular, their scalar product is equal to zero: that is,

A(x - xo) + B(y - yo) = 0. (10.8)

Equation (10.8) is called equation of a straight line passing through a given point perpendicular to a given vector .

The vector n = (A; B) perpendicular to the line is called normal normal vector of this line .

Equation (10.8) can be rewritten as Ah + Wu + C = 0 , (10.9)

where A and B are the coordinates of the normal vector, C \u003d -Ax o - Vu o - free member. Equation (10.9) is the general equation of a straight line(see Fig.2).

Fig.1 Fig.2

Canonical equations of the straight line

,

Where
are the coordinates of the point through which the line passes, and
- direction vector.

Curves of the second order Circle

A circle is the set of all points of a plane equidistant from a given point, which is called the center.

Canonical equation of a circle of radius R centered on a point
:

In particular, if the center of the stake coincides with the origin, then the equation will look like:

Ellipse

An ellipse is a set of points in a plane, the sum of the distances from each of them to two given points and , which are called foci, is a constant value
, greater than the distance between the foci
.

The canonical equation of an ellipse whose foci lie on the Ox axis and whose origin is in the middle between the foci has the form
G de
a the length of the major semiaxis; b is the length of the minor semiaxis (Fig. 2).