Особенности планет земной группы. Планетарный ландшафт

Поверхность Земли не остается неизменной. В течение тех миллионов лет, что существует наша планета, на ее внешний облик постоянно оказывали влияние различные природные силы. Изменения, которые происходят на поверхности Земли, вызваны как действием внутренних сил, так и тем, что происходит в атмосфере.

Так, горы образовались в результате передвижения земной коры. Толщи пород выталкивались на поверхность, сминаясь и разбиваясь, в результате чего образовались различные типы гор. Шло время, дождь и мороз дробили горы, создавая отдельные утесы и долины.

Некоторые горы образовались в результате извержения вулканов. Расплавленная порода, пузырясь, изливалась на поверхность Земли через отверстия в коре слой за слоем, пока в конце концов не возникала гора. Везувий в Италии — гора вулканического происхождения.

Вулканические горы могут формироваться и под водой. Например, Гавайские острова - это вершины вулканических гор.

Солнце, ветер и вода вызывают постоянное разрушение горных пород. Этот процесс называется эрозией. Но он может затрагивать не только горные породы. Так, эрозия с помощью льда, ветра и воды вымывает земную почву.

Ледники в местах сползания в море разрезают равнины, образуя долины и фьорды — узкие и извилистые морские заливы.

Фиорды образовались во время ледникового периода, когда континенты были покрыты толстым слоем льда и снега.

Эти льды, в свою очередь, вызвали образование ледников, которые представляют собой медленно движущиеся реки льда.

Сползая с гор в долины, ледники, толщина льда в которых иногда доходила до нескольких десятков метров, пробивали себе пути. Сила их движения была очень велика.

Сначала по пути ледников образовывались узкие ущелья, затем чудовищная сила ледника увеличивала их, открывая себе путь вниз. Постепенно это пространство становилось все глубже и шире.

После окончания ледникового периода лед и снег начали таять. По мере таяния льда ширина рек увеличивалась. Одновременно уровень моря поднимался. Так на месте рек образовались фиорды.

Берега фиордов обычно представляют собой скалистые откосы, иногда достигающие высоты в 1000 метров (3000 футов).

Некоторые фиорды так глубоки, что в них возможно движение судов.

Большое количество фиордов расположены на побережьях Финляндии и Гренландии. Но самые красивые фиорды находятся в Норвегии. Самый длинный фиорд также находится в Норвегии. Он называет ся Согне-фьорд. Его длина - 180 километ ров (113 миль).

После таяния льда остаются морены — скопления обломков горных пород — и формируются зигзагообразные вершины гор. Реки пробивают в рыхлых породах овраги, а в некоторых местах и огромные каньоны (глубокие речные долины с крутыми ступенчатыми склонами), такие, например, как Великий Каньон в Аризоне (США). Он простирается на 349 километров в длину.

Дожди и ветры являются подлинными скульпторами и высекают настоящие скульптурные группы, различные фигуры. В Австралии находятся так называемые Ветряные скалы, а недалеко от Красноярска находятся каменные столбы. И те, и другие образовались в результате ветровой эрозии.

Эрозия земной поверхности — процесс далеко не безвредный. Ежегодно благодаря ей исчезают многие десятки гектаров пахотных земель. В реки уносится большое количество плодородной почвы, на образование которой в естественных условиях уходят сотни лет. Поэтому человек старается всеми возможными способами бороться с эрозией.

Главное направление этой борьбы — предотвращение размывания почвы. Если на почве отсутствует растительный покров, то ветер и вода легко уносят плодородный слой и земля становится бесплодной. Поэтому в районах с интенсивными ветрами применяют сохраняющие способы обработки земли, например безотвальную пахоту.

Кроме того, ведется и борьба с оврагами. Для этого берега рек засаживают различными растениями, укрепляют склоны. На морских и речных побережьях, где происходит сильное размывание берега, делают специальную отсыпку гравия и устанавливают защитные дамбы, предотвращающие перенос песка.

Рельеф нашей планеты поражает своим многообразием и незыблемым величием. Широкие равнины, глубокие речные долины и остроконечные шпили высочайших вершин - все это, казалось бы, украшало и будет украшать наш мир всегда. Но это вовсе не так. На самом деле рельеф Земли изменяется.

Но чтобы заметить эти изменения, недостаточно и нескольких тысяч лет. Что уж говорить о жизни обычного человека. Развитие земной поверхности - это сложный и многогранный процесс, который длится вот уже несколько миллиардов лет. Итак, почему и как рельеф Земли изменяется во времени? И что лежит в основе этих изменений?

Рельеф - это…

Данный научный термин происходит от латинского слова relevo, что значит «поднимаю вверх». В геоморфологии под ним подразумевают совокупность всех существующих неровностей земной поверхности.

Среди ключевых элементов рельефа выделяется три: точка (например, горная вершина), линия (например, водораздел) и поверхность (например, плато). Эта градация очень схожа с выделением основных фигур в геометрии.

Рельеф может быть разным: горным, равнинным или же холмистым. Он представлен самыми разнообразными формами, которые могут отличаться друг от друга не только своим внешним видом, но и происхождением, возрастом. В географической оболочке нашей планеты рельеф играет крайне важную роль. Прежде всего, он является основой любого природно-территориального комплекса, подобно фундаменту жилого дома. Помимо этого, он принимает непосредственное участие в перераспределении влаги по а также участвует в формировании климата.

Как изменяется рельеф Земли? И какие его формы известны современным ученым? Об этом пойдет речь далее.

основные формы и возраст рельефных форм

Форма рельефа - фундаментальная единица в геоморфологической науке. Если говорить простыми словами, то это конкретная неровность земной поверхности, которая может быть простой или сложной, положительной или отрицательной, выпуклой или же вогнутой.

К основным относятся следующие формы земного рельефа: гора, котловина, лощина, хребет, седловина, овраг, каньон, плато, долина и прочие. По своему генезису (происхождению) они могут быть тектоническими, эрозионными, эоловыми, карстовыми, антропогенными и т. д. По масштабу принято выделять планетарные, мега-, макро-, мезо-, микро- и наноформы рельефа. К планетарным (самым крупным) относятся материки и океаническое ложе, геосинклинали и срединно-океанические хребты.

Одной из главных задач ученых-геоморфологов является определение возраста тех или иных форм рельефа. Причем этот возраст может быть как абсолютным, так и относительным. В первом случае он определяется при помощи специальной Во втором случае его устанавливают относительно возраста какой-либо другой поверхности (здесь уместно применять слова «моложе» или «древнее»).

Известный исследователь рельефа В. Девис сравнивал процесс его формирования с человеческой жизнью. Соответственно, он выделял четыре стадии развития любой формы рельефа:

  • детство;
  • юность;
  • зрелость;
  • дряхлость.

Как и почему рельеф Земли изменяется во времени?

В нашем мире ничто не вечно и не статично. Точно так же и рельеф Земли изменяется с течением времени. Вот только заметить эти изменения практически невозможно, ведь они длятся сотни тысяч лет. Правда, они проявляются в землетрясениях, вулканической деятельности и прочих земных явлениях, которые мы привыкли называть катаклизмами.

Главные первопричины рельефообразования (как, впрочем, и любых других процессов на нашей планете) - это энергия Солнца, Земли, а также космоса. Изменение рельефа Земли происходит постоянно. И в основе любых таких изменений лежат всего два процесса: денудация и аккумуляция. Эти процессы очень тесно взаимосвязаны, подобно известному принципу «инь-янь» в древнекитайской философии.

Аккумуляция - это процесс накопления рыхлого геологического материала на суше или дне водоемов. В свою очередь денудация - это процесс разрушения и переноса разрушенных фрагментов горных пород на другие участки земной поверхности. И если аккумуляция стремится накопить геологический материал, то денудация пытается его разрушить.

Главные факторы рельефообразования

Рисунок формируется вследствие постоянного взаимодействия эндогенных (внутренних) и экзогенных (внешних) сил Земли. Если сравнивать процесс рельефообразования со строительством здания, то тогда эндогенные силы можно назвать «строителями», а экзогенные силы - «скульпторами» земного рельефа.

К внутренним (эндогенным) относят вулканизм, землетрясения и К внешним (экзогенным) - работу ветра, текучей воды, ледников и т. д. Последние силы занимаются своеобразным оформлением рельефных форм, иногда придавая им причудливые очертания.

В целом геоморфологи выделяют всего четыре фактора рельефообразования:

  • внутренняя энергия Земли;
  • всемирная сила тяготения;
  • солнечная энергия;
  • энергия космоса.

Министерство образования и науки Российской Федерации
Саратовский Государственный Университет
им. Н. Г. Чернышевского

Кафедра геоэкологии

ИЗМЕНЕНИЯ ЛАНДШАФТОВ В ИСТОРИИ ЗЕМЛИ

РЕФЕРАТ

Специальность 020401 – География.
Студент 5 курса географического факультета.
Невечеря Константина Сергеевича

Преподаватель
геоэкологии _______________ А. М. Иванов

Саратов, 2011

Введение 3
4
Факторы, меняющие ланшафт 11
11
Землетрясения 12
Вулканы. Типы извержений 14
Заключение 17
Список использованных источников 18


Введение

Ландшафт (нем. Landschaft, вид местности, от Land - земля и schaft - суффикс, выражающий взаимосвязь, взаимозависимость) - одно из фундаментальных понятий географии, 1) характер геопространственной структуры участка земной поверхности; 2) конкретная часть земной поверхности с единой структурой и динамикой.
Под ландшафтом в географии также понимают повторяющуюся мозаику взаимодействующих местообитаний и организацию визуального рисунка земной поверхности. Под ландшафтом в географии обычно подразумевают участки земли и их свойства, обусловленные взаимодействием рельефа, климата, геологической структуры, почв, растительного и животного мира и человеческой деятельности. В то же время употребляются термины «почвенный ландшафт», «ландшафт растительности» и т. д. для обозначения монокомпонентных образований. Размеры ландшафтов составляют от нескольких километров и выше: именовать ландшафтами меньшие территории - нецелесообразно. В то же время в ландшафтной экологии выделяют ландшафты отдельных видов животных, размеры которых зависят от их экологических характеристик: от десятков квадратных метров для насекомых до сотен квадратных километров для крупных млекопитающих и птиц.
Иногда ландшафтом именуют основную единицу физико-географического районирования территории; генетически единый район с однотипным рельефом, геологическим строением, климатом, общим характером поверхностных и подземных вод, закономерным сочетанием почв, растительных и животных сообществ. Такое употребление данного термина следует считать устаревшим, так как отсутствуют четкие критерии однотипности и генетической общности характеристик, используемых при выделении таких единиц.


Изменчивость, устойчивость и динамика ландшафта

Изменчивость ландшафтов обусловлена многими причинами, она имеет сложную природу и выражается в принципиально различных формах. Прежде всего, следует различать в ландшафтах два основных типа изменений (по Л.С.Бергу) обратимые и необратимые. Изменения первого типа не приводят к качественному преобразованию ландшафта, они совершаются, как отметил В.Б.Сочава, в рамках одного инварианта, в отличие от изменений второго типа, которые ведут к трансформации структур, т.е. к смене ландшафтов. Все обратимые изменения ландшафта образуют его динамику, тогда как необратимые смены составляют сущность его развития. Инвариант - это совокупность возможных относительно обратимых состояний геосистемы, в пределах которой ее можно идентифицировать самой себе. Под состоянием геосистемы подразумевается упорядоченное соотношение параметров ее структуры и функций в определенный промежуток времени.
Динамика (изменения) ландшафта связана с его устойчивостью: именно обратимые динамические смены указывают на способность ландшафта возвращаться к исходному состоянию, т.е. на его устойчивость. Под устойчивостью системы подразумевается ее способность сохранять структуру при воздействии возмущающих факторов или возвращаться в прежнее состояние после нарушения. Проблема устойчивости ландшафта приобретает важное практическое значение в связи с нарастающим техногенным "давлением".
Заметный вклад в. изучение и понимание данного свойства ландшафтных геосистем внесли ученые Иркутской, Московской и Ленинградской ландшафтоведческих школ - В.Б. Сочава, А.Г. Исаченко, В.А. Николаев, М.А. Глазовская, И.И. Мамай, К.Н. Дьяконов, Н.Л. Беручашвили, А.А. Крауклис и др.
Состояние природной геосистемы - это определенный тип и упорядоченное соотношение параметров ее структуры и функционирования, ограниченные некоторым отрезком времени. Смена одного состояния другим, сопровождающаяся изменением структуры и функционирования геосистемы, называется динамикой геосистем. То есть динамика геосистем - это пространственно-временные изменения их состояния. При смене погодных условий, времени суток и года, разных по климатическим параметрам лет и многолетних периодов, связанных с циклами солнечной активности, геосистемы, изменяя структуру и функционирование (состояния), адаптивно подстраиваются к ним. Примеры состояний: а) зимние, летние; б) влажные; засушливые и т.п. Так, в ландшафтах средней полосы России в течение года наблюдаются следующие изменения их состояний. Зимой нет фотосинтеза, замедляются процессы разложения и минерализации органики, практически отсутствует поверхностный сток на междуречьях; в структуре геосистем участвует сезонный компонент - снежный покров, формирующий свой геогоризонт, промерзают почвы, образуется ледяной покров на водоемах. В весеннее время процессы снеготаяния сопровождаются стоком талых вод, активным плоскостным смывом и линейной эрозией на склонах, особенно на слабозадернованных участках, половодьями на реках. С апреля и летом активно идет фотосинтез, биопродуцирование и минерализация органических остатков. То есть от сезона к сезону и в разных погодных условиях природные геосистемы изменяют свои состояния, а именно по-разному функционируют и даже бывают представлены различными вариантами их вертикальной и горизонтальной структуры.
Геосистемы изменяют свои структуры и функционирование и при переходе от одной стадии развития к другой (молодости-зрелости-старения). Итак, динамика геосистем - это смена их состояний. Различают несколько видов естественной ландшафтной динамики:
динамика функционирования,
развития, эволюции,
катастроф (или революций)
восстановительных сукцессий.
Каждый из них характеризуется преобладанием той или иной формы развертывания событий (смен состояний) во времени.
Динамика функционирования - ведущая роль принадлежит ритмической смене обратимых состояний геосистем, связанных с круговоротами вещества и энергии и с ритмами внешней среды (планетарными, солнечными). Если говорить о функциональной динамике геосистем вообще, то пространственную и временную ее характеристики рассматривают как относительно равнозначные составляющие. Например, изменение химического состава, скорости или положения загрязненной массы воды в водотоке при его перемещении (изменении положения) в пространстве, или суточные и сезонные (временные) изменения в ландшафтах - все это их динамика. Однако, учитывая, что ландшафтные геосистемы обладают жестким, относительно инертным литогенным каркасом, пространственные характеристики их функциональной динамики имеет смысл анализировать лишь для их мобильных компонентных структур: воздуха, воды и животного населения. Поэтому при изучении функциональной динамики ландшафтной геосистемы в целом, если она не испытывает аномальных внешних воздействий (антропогенных или природных), основной акцент обычно делается на изучении изменений ее состояний во времени.
Итак, функциональная динамика ландшафтных геосистем включает в себя: - процессы обмена веществом и энергией с внешней средой (метаболизм геосистемы), которые можно рассматривать в качестве звеньев вещественно-энергетических круговоротов в смежных геосистемах; - внутренние круговороты вещества и энергии в геосистеме; - адаптивные обратимые функциональные изменения состояния геосистемы под влиянием ритмических и случайных изменений внешней среды в пределах определенного ее инварианта. Функциональная динамика характеризуется и проявляется в основном в форме ритмов и циклов.
Ритмичность - это закономерное чередование явлений через определенный промежуток времени (период) или в пространстве (дыхание, биопродуцирование, чередование форм рельефа в пространстве). Цикл (греч, - круг) - это совокупность взаимосвязанных процессов и явлений, означающих завершенность процесса от его начала до конца - законченный круг развития чего-либо (суточный цикл, жизненный цикл или этап, цикл лекций, цикл биопродуцирования). То есть динамика функционирования - это в основном периодически повторяющиеся в определенной последовательности серии состояний геосистемы (суточных, сезонных, погодных и других), отличающихся спецификой структуры и функционирования. Бывают ритмы и с большей периодичностью - 11-летней, 30-летней, вековой и др. Различают ритмы кратковременные - в пределах суток (стексы), средневременные - в пределах года (погодные, сезонные, подсезонные состояния), долговременные. Ландшафтные ритмы с разными периодами накладываются друг на друга. Кратковременные происходят на фоне средневременных, а средневременные - на фоне долговременных.
Кроме того, для функциональной динамики весьма характерны и непериодические, аритмичные обратимые изменения состояний, связанные, прежде всего, с изменениями погодных условий. Примерами функциональной динамики в геосистемах могут быть повторяющиеся ежегодно в умеренных широтах активный фотосинтез зеленых растений, цветение, вегетация, созревание семян; активные биогеохимические круговороты, связанные с накоплением элементов минерального питания в растениях, минерализацией отмерших остатков растений, поступлением элементов в почву, а из нее вновь в растения; активное функционирование овражно-балочных систем в теплые и влажные сезоны года и прекращение или резкое затухание процессов фотосинтеза и вегетации растений в холодные, морозные и сухие сезоны. Итак, динамике функционирования природных геосистем, прежде всего, свойственны ритмика и цикличность, а также незначительные аритмичные колебания наиболее мобильных параметров, характеризующиеся обратимыми изменениями их состояний.
Однако обратимость состояния геосистем относительна, так как в процессе функционирования и жизнедеятельности в них накапливаются необратимые изменения («нельзя дважды войти в одну и ту же реку»). Колебательные обратимые изменения в геосистемах как бы нанизаны на процесс направленных, необратимых изменений как в самой геосистеме, так и во внешней природной среде. За разномасштабной ритмикой этот процесс порой бывает трудноуловим, так как протекает значительно медленнее. Когда природная геосистема характеризуется определенной направленностью развития, направленной динамикой, то говорят о трендах развития и эволюции (например, зарастание озера, прогрессирующее заболачивание таежного ландшафта, эрозионное расчленение и т.д.).
К настоящему времени сформировалась ландшафтная оболочка, насыщенная жизнью, биотическим и биокосным веществом, в биосфере выделился человек, оказывающий своей деятельностью и антропогенными веществами все большее влияние на ландшафтную оболочку. Ведущими факторами внешней среды, сильно влияющими на тренды эволюционного развития геосистем, являются энергия Солнца и эндогенная энергия земли, определяющие гидроклиматические и геолого-геоморфологические особенности территорий (геома). Среди же факторов спонтанного развития геосистем значительная роль принадлежит биоте и экзогенным внутриландшафтным процессам. Именно благодаря деятельности биоты ландшафтная оболочка за 2-2,5 млрд лет претерпела кардинальные изменения структуры и функционирования. Однако эволюционная динамика, обусловленная зарождением и саморазвитием новых геосистемных элементов, требует наличия определенных структурно-генетических предпосылок, заключенных как в самих ландшафтных комплексах, так и во внешней среде. То есть спонтанная эволюционная динамика готовится предыдущим историческим развитием геосистемы, а особенно активно реализуется в периоды или фазы экстремального проявления внешних воздействий. Такие воздействий обычно связаны либо с многолетними циклами функционирования и развития глобальных геосистем, либо с наложением и «интерференцией» разных видов внешних планетарных и космических процессов. Например, влажные или сухие эпохи, обусловленные многовековыми внешними ритмами, неодинаково влияют на саморазвитие элювиальных (водораздельных) и аккумулятивных геокомплексов; активная распашка водоразделов и склонов во время влажных многолетних периодов (фаз) ведет к зарождению и последующему развитию множества разнообразных овражно-балочных геокомплексов и к лучшей дренированности вмещающих их ландшафтов.
Итак, на эволюцию природных геосистем влияют процессы в изменяющейся внешней среде и спонтанные процессы саморазвития. Однако они тесно связаны друг с другом. Динамика катастроф или революций (лат. revolutio - поворот) - это прерывистое, скачкообразное качественное превращение одного состояния и самих геосистем в другие. Реализуется в форме быстроразвертывающихся во времени эпизодических катастроф и кризисов, связанных с экстремальными стихийными явлениями, ведущими к коренной смене структур геокомплексов. К ним относятся такие разрушительные процессы, как обвалы, лавины и сели в горах, ураганы, катастрофические ливни и наводнения, вулканические извержения, пожары, неумеренная хозяйственная деятельность и др. В отличие от медленно и длительно проявляющейся эволюционной динамики динамика природных катастроф происходит в сравнительно сжатые отрезки времени и влечет за собой разрушение или полное уничтожение биоты и почвенного покрова, а порой и изменения литогенной основы. Ландшафту после таких катастроф требуется несколько десятков, а то и сотни лет на восстановление вертикальной и горизонтальной структуры, либо на становление обновленных геокомплексов на новой литогенной основе. Причем существенные изменения литогенной основы ландшафтов могут коренным образом изменить направление их развития и эволюции. То есть динамика революций или катастроф является еще одним из факторов, определяющих структурную организацию, развитие и эволюцию геосистем.
Динамика восстановительных сукцессий - завершение кратковременных деструктивных фаз эпизодических экстремальных природных и антропогенных явлений, ведущих к разрушению части структурных элементов геосистем, и следующие за ними тренды длительно производных смен их состояний, направленных на восстановление почвенно-растительного покрова и стабилизацию геосистемы в окружающей среде. Динамика саморазвития природных геосистем после таких катаклизмов сопровождается следующими стадиями:
1. Зарождение геосистемы на новой литогенной основе (например, осушенное дно озера после прорыва завала, свежая осыпь у подножья склона, отложения селя в долинах горных рек и у подножий гор, промоины на склоне и мощные пролювиальные наносы после экстремальных ливневых осадков и т.п.).
2. Становление геосистемы, характеризующееся повышенной функциональной и структурной изменчивостью, возникновением растительного и почвенного покрова.
3. Стадия зрелости (климакс) геосистемы, характеризующаяся ее стабилизацией и соответствием всех элементов ее структуры существующим условиям среды.
4. Отмирание одной и зарождение на ее месте новой, геосистемы (на месте зарастающего озерного геокомплекса возникает низинное болото, оно сменяется верховым, а верховое болото может смениться заболоченным лесом).
То есть после эпизодических катастрофических нарушений геосистемы проходят серии определенных стадий саморазвития или восстановительных сукцессий (восстановление древостоя и почв на месте вырубки или пожарищ). Итак, последовательное стадийное изменение ландшафта после прекращения природных или антропогенных его нарушений от начала восстановления или зарождения до устойчивого эквифинального состояния (климакса) называется динамикой восстановительных сукцессий. Ландшафтная динамика восстановительных сукцессий - это последовательная смена состояний геосистемы, направленная на ее стабилизацию в окружающей среде.
Становление геосистемы на новой литогенной основе с уничтоженным растительным покровом называется первичной сукцессией. Вторичная сукцессия - это восстановление и деструкция поч-венно-растительного покрова в уже существовавшей геосистеме (на месте пожарищ, вырубок). В зависимости от степени и типа нарушенности геосистемы и ее внутренних способностей к самовосстановлению характерные времена периода восстановительных сукцессий (релаксаций) существенно различаются. Так, восстановительная сукцессия в средней тайге после сплошных рубок, без нарушения почвенного покрова, характеризуется 100-200-летним периодом релаксации и примерно следующими стадиями: разрозненных травянистых растительных группировок; травяно-кустарниковых сообществ; мелколиственного травяно-кустарникового молодого леса; мелколиственного леса с подростом хвойных пород; хвойного леса с примесью мелколиственных деревьев; типичного среднетаежного хвойного зеленомошно-кустарничкового (климаксового) леса. При фрагментарных нарушениях верхних горизонтов почв - 400-800 лет,
По фактору, обусловившему начало восстановительной сукцессии, различают:
а) природно-катастрофические (лесные пожары, ветровалы, лавины и др.);
б) антропогенные (вырубка, пастбищная дигрессия, пашня).
Кроме того, сейчас все большую роль в «жизни», геосистем играет антропогенная динамика, которая может проявляться и в особенностях функционирования, и в развитии, и в эволюции, а часто проявляется в форме катастроф или революций и восстановительных сукцессий. Все это идет на фоне случайных изменений параметров как самих геосистем, связанных с «ошибками» или неточностями их функционирования и развития, так и внешней среды.
Антропогенная динамика геосистем обусловлена хозяйственными воздействиями на природную среду. Этот вид динамики проявляется по отношению:
а) к растительности: вырубка и другие виды механического уничтожения древесно-кустарниковой растительности, сопровождающиеся сокращением площади и изменениями качества лесов, распахивание степей и лугов;
б) к почвам и рельефу: ускоренная сельскохозяйственная эрозия и дефляция почв, связанные с механическими повреждениями растительного и почвенного покровов, дигрессия пастбищ и развеивание песков, опустынивание, изменения рельефа и ландшафтных геосистем в целом карьерно-отвальными комплексами, деградация и коренные преобразования ландшафтов в городах и промышленных зонах и др.;
в) к гидросфере заболачивание подтопленных водохранилищами побережий и вторичное засоление почв на орошаемых землях в аридных районах;
г) загрязнение природной среды и сопровождающие его нарушения растительности, почв, животного населения. Антропогенная динамика геосистем в большинстве случаев осуществляется природными процессами (эрозия, заболачивание), но процессы, вызванные хозяйственной деятельностью и ведут к деградации, разрушению ландшафтных комплексов. Например, интенсивная эрозия почв и кор выветривания в горах после сведения лесов (Древняя Греция); дефляция почв, эоловое рельефообразование. опустынивание после сильной дигрессии пустынных или степных пастбищ; усыхание, отмирание и изменение растительности в городах и загрязняемых промзонах.
Таким образом, различают несколько видов ландшафтной динамики: - динамика функционирования; - динамика развития; - эволюционная динамика; - динамика природных катастроф или революций; - динамика восстановительных сукцессий; - антропогенная динамика. Динамики функционирования и восстановительных сукцессий стабилизируют геосистемы (стабилизирующие динамики), повышают их устойчивость. Они характеризуются относительной обратимостью изменений состояний геосистем в пределах их инварианта. Динамики эволюции и развития, характеризующиеся трендами, динамика природных катастроф и антропогенная динамика ведут к резким, необратимым качественным изменениям и преобразованиям ландшафтов. Все виды динамики, накладываясь друг на друга, неразрывно связаны между собой и характеризуют прошлое, настоящее и будущее геосистем. Динамика развития и функционирования ландшафта - это конкретный современный этап ландшафтной эволюции. То есть динамику ландшафта в целом можно определить как совокупность изменений состояний ландшафта, имеющих как обратимый (стабилизирующий), так и необратимый (преобразующий) характер, обусловленных внешними и внутренними факторами. Одной из внутренних причин, порождающих динамику эволюции и развития геосистем, является разная инерционность их природных компонентов и геокомплексов. То есть они реагируют на изменения внешней среды с разной скоростью.


Факторы, меняющие ланшафт

Эрозия почвы: ветровая и водная

Сильные ветры, вызывающие пыльные бури в степи, бурные потоки мутной воды и маленькие ручейки, стекающие по склонам ранней весной или летом после ливня, причиняют большой ущерб народному хозяйству. Во время пыльных бурь сносится плодородный слой почвы, из ее состава выдувается мелкозем, в результате чего поверхность поля становится неровной. Стекающие воды образуют промоины и овраги, вымывают и уносят в гидрографическую сеть питательные вещества.
Под воздействием сильных ветров и неурегулированного стока поля становятся неудобными для обработки, а почвы постепенно теряют свое плодородие - это и есть эрозия почвы. По определению академика Л.И. Прасолова, "под общим понятием эрозии почвы разумеются многообразные и широко распространенные явления разрушения и сноса почв и рыхлых пород потоками воды и ветра".
Особенности развития и проявления современных эрозионных процессов дают возможность выделить нормальную и ускоренную эрозию почвы. Нормальная эрозия протекает очень медленно, а поэтому незначительные потери верхних слоев почвы от выдувания и смыва восстанавливаются в ходе почвообразовательного процесса. Такая эрозия имеет место на почвах, поверхность которых не затронута хозяйственной деятельностью. Нормальную эрозию называют геологической.
Ускоренная эрозия почвы имеет место в районах, где нерациональная хозяйственная деятельность человека активизирует естественные эрозионные процессы, доводя их до разрушительной стадии. Ускоренная эрозия является следствием интенсивного использования земли без соблюдения противоэрозионных мероприятий (распашка склонов, сплошная вырубка лесов, нерациональное освоение девственных степей, неурегулированный выпас скота, приводящий к уничтожению естественной травянистой растительности) .
Различают ветровую и водную эрозии почв. В ветровой эрозии (дефляции) различают пыльные бури (черные бури) и повседневную (местную) ветровую эрозию. Во время пыльных бурь ветры достигают больших скоростей и охватывают огромные территории. На отдельных участках за один-два дня сносится верхний горизонт почвы мощностью до 25 см, уничтожаются посевы на огромных площадях.
Повседневная, или местная, ветровая эрозия почв носит локальный характер и охватывает небольшие площади. Наиболее часто она проявляется на песках и площадях с легкими почвами, а также на карбонатных суглинистых почвах. Местная ветровая эрозия проявляется и зимой, когда сильные ветры сдувают снег. В этом случае почва на оголенных участках, прежде всего на выпуклых склонах, быстро теряет влагу и разрушается воздушными потоками.
Водную эрозию почвы подразделяют на смыв почв (плоскостная эрозия) и овражную (линейную). Микрорельеф почвы не бывает идеально ровным. В связи с этим поверхностный сток атмосферных вод осуществляется струйками и ручейками различной величины. Концентрированные потоки талой, ливневой и дождевой воды создают промоины и водоройны, чаще небольших размеров. За год поле теряет из верхнего горизонта б-12 т/га материала, а в отдельных случаях, при сильных ливнях, с гектара смывается до 200 т наиболее плодородной почвы. При этом почвы на поле, покрытом растительностью, смываются в меньшей степени, чем обнаженном.
Таким образом, с распаханных площадей, расположенных на склонах, вследствие неурегулированного поверхностного стока наблюдается удаление плодородного слоя почвы. Этот малозаметный, но наиболее опасный и вредный процесс носит название смыв почв (плоскостная эрозия). На крутых и длинных склонах сток может привести к образованию крупных струйчатых и ручейковых размывов, с которыми уже нельзя бороться обычной обработкой почвы. Это так называемый струйчатый смыв почв. В этом случае образовавшиеся размывы необходимо специально заравнивать, так как в противном случае они в дальнейшем перерастут в овраги .

Землетрясения

Землетрясения - колебания Земли, вызванные внезапными изменениями в состоянии недр планеты. Эти колебания представляют собой упругие волны, распространяющиеся с высокой скоростью в толще горных пород. Наиболее сильные землетрясения иногда ощущаются на расстояниях более 1500 км от очага и могут быть зарегистрированы сейсмографами (специальными высокочувствительными приборами) даже в противоположном полушарии. Район, где зарождаются колебания, называется очагом землетрясения, а его проекция на поверхность Земли – эпицентром землетрясения. Очаги большей части землетрясений лежат в земной коре на глубинах не более 16 км, однако в некоторых районах глубины очагов достигают 700 км. Ежедневно происходят тысячи землетрясений, но лишь немногие из них ощущаются человеком.
Последствия землетрясений. Сильные землетрясения оставляют множество следов, особенно в районе эпицентра: наибольшее распространение имеют оползни и осыпи рыхлого грунта и трещины на земной поверхности. Характер таких нарушений в значительной степени определяется геологическим строением местности. В рыхлом и водонасыщенном грунте на крутых склонах часто происходят оползни и обвалы, а мощная толща водонасыщенного аллювия в долинах деформируется легче, чем твердые породы. На поверхности аллювия образуются просадочные котловины, заполняющиеся водой. И даже не очень сильные землетрясения получают отражение в рельефе местности.
Смещения по разломам или возникновение поверхностных разрывов могут изменить плановое и высотное положение отдельных точек земной поверхности вдоль линии разлома, как это произошло во время землетрясения 1906 в Сан-Франциско. При землетрясении в октябре 1915 в долине Плезант в Неваде на разломе образовался уступ длиной 35 км и высотой до 4,5 м. При землетрясении в мае 1940 в долине Импириал в Калифорнии подвижки произошли на 55-километровом участке разлома, причем наблюдались горизонтальные смещения до 4,5 м. В результате Ассамского землетрясения (Индия) в июне 1897 в эпицентральной области высота местности изменилась не менее, чем на 3 м.
Значительные поверхностные деформации прослеживаются не только вблизи разломов и приводят к изменению направления речного стока, подпруживанию или разрывам водотоков, нарушению режима источников воды, причем некоторые из них временно или навсегда перестают функционировать, но в то же время могут появиться новые. Колодцы и скважины заплывают грязью, а уровень воды в них ощутимо меняется. При сильных землетрясениях вода, жидкая грязь или песок могут фонтанами выбрасываться из грунта.
При смещении по разломам происходят повреждения автомобильных и железных дорог, зданий, мостов и прочих инженерных сооружений. Однако качественно построенные здания редко разрушаются полностью. Обычно степень разрушений находится в прямой зависимости от типа сооружения и геологического строения местности. При землетрясениях умеренной силы могут происходить частичные повреждения зданий, а если они неудачно спроектированы или некачественно построены, то возможно и их полное разрушение.
При очень сильных толчках могут обрушиться и сильно пострадать сооружения, построенные без учета сейсмической опасности. Обычно не обрушиваются одно- и двухэтажные постройки, если у них не очень тяжелые крыши. Однако бывает, что они смещаются с фундаментов и часто у них растрескивается и отваливается штукатурка.
Дифференцированные движения могут приводить к тому, что мосты сдвигаются со своих опор, а инженерные коммуникации и водопроводные трубы разрываются. При интенсивных колебаниях уложенные в грунт трубы могут « складываться», всовываясь одна в другую, или выгибаться, выходя на поверхность, а железнодорожные рельсы деформироваться. В сейсмоопасных районах сооружения должны проектироваться и строиться с соблюдением строительных норм, принятых для данного района в соответствии с картой сейсмического районирования.
В густонаселенных районах едва ли не больший ущерб, чем сами землетрясения, наносят пожары, возникающие в результате разрыва газопроводов и линий электропередач, опрокидывания печей, плит и разных нагревательных приборов. Борьба с пожарами затрудняется из-за того, что водопровод оказывается поврежденным, а улицы непроезжими вследствие образовавшихся завалов .

Вулканы. Типы извержений

Вулканы - (по имени бога огня Вулкана), геологическое образование возникающее над каналами и трещинами в земной коре по которым извергаются на земную поверхность из глубины магматических источников лавы, горячие газы и обломки горных пород. Обычно вулканы представляют отдельные горы, сложенные продуктами извержений.
Вулканы разделяются на действующие, уснувшие и потухшие. К первым относят вулканы, извергающиеся в настоящее время постоянно или периодически. К уснувшим относят вулканы, об извержениях которых нет сведений, но они сохранили свою форму и под ними происходят локальные землетрясения. Потухшими называются сильно разрушенные и размытые вулканы без каких-либо проявлений вулканической активности.
и т.д.................

Природно-ресурсный потенциал ландшафтов

Ландшафт согласно современному представлению выполняет средообразующие, ресурсосодержащие и ресурсовоспроизводящие функции. Природно-ресурсный потенциал ландшафта является мерой возможного выполнения им этих функций. Определив природно-ресурсный потенциал, можно оценить способность ландшафта удовлетворять потребности общества (сельскохозяйственные, водохозяйственные, промышленные и т.д.). Для чего выделяют частные природно-ресурсные потенциалы ландшафта: биотический, водный, минерально-ресурсный, строительный, рекреационный, природоохранный, самоочищения.

Природно-ресурсный потенциал - это не максимальный запас ресурсов, а только тот, который используется без разрушения структуры ландшафта. Изъятие из геосистемы вещества и энергии возможно столько, сколько не приведет к нарушению способности саморегулирования и самовосстановления.

Биотический потенциал характеризует способность ландшафта продуцировать биомассу. Мерой биологического потенциала геосистем считается величина ежегодной биологической продукции. Биотический потенциал поддерживает почвообразование или восстанавливает плодородие почвы. Предел биологического потенциала определяет допустимую нагрузку на геосистему. Вмешательство человека в биологический круговорот геосистем снижает потенциальные биологические ресурсы и плодородие почв.

Водный потенциал выражается в способности ландшафта использовать получаемую воду не только растительностью, но и образовывать относительно замкнутый круговорот воды, пригодный для нужд человека. Водный потенциал и свойства ландшафта влияют на биологический круговорот, почвенное плодородие, распределение составляющих водного баланса. Границы между внутриландшафтными геосистемами одновременно являются границами территорий с характерным водным балансом.

Минерально-ресурсным потенциалом ландшафта считают накопленные в течение геологических периодов отдельные вещества, строительные материалы, минералы, энергоносители, которые используют для нужд общества. Такие ресурсы в ходе геологических циклов могут быть возобновимыми (леса) и невозобновимыми (несоизмеримы с этапами развития человеческого общества и скоростью их расхода).

Строительный потенциал предусматривает использование природных условий ландшафта для размещения строящегося объекта и выполнения им заданных функций.

Рекреационный потенциал - совокупность природных условий ландшафта, положительно влияющих на человеческий организм. Выделяют рекреационные ресурсы и рекреационные ландшафты. Рекреационные ресурсы используют для отдыха, лечения, туризма, а рекреационные ландшафты выполняют рекреационные функции (зеленые зоны, лесопарки, курорты, живописные места и т.д.).

Природоохранный потенциал обеспечивает сбережение биологического разнообразия, устойчивость и восстановление геосистем.

Потенциал самоочищения определяет способность ландшафта разлагать, выносить загрязняющие вещества и устранять их вредное воздействие.

Ландшафт - многофункциональное образование, т. е. пригоден для выполнения разного вида деятельности, но выбор исполняемых функций должен соответствовать его природным свойствам, ресурсному потенциалу.

Измененные ландшафты

Воздействие на любой компонент ландшафта по цепочке вертикальных связей передастся на другие компоненты, а по горизонтальным связям - на другие геосистемы. Воздействия прямо или косвенно изменяют многие природные процессы: теплового баланса, влагооборота, биологического и геохимического круговорота, перемещения материала.

Так, изменения литогенной основы могут быть связаны с прямым или косвенным воздействием человека: добыча полезных ископаемых, земляные работы. Образуются карьеры, выемки, отвалы пустой породы, терриконы и другие техногенные формы рельефа, которые способствуют обвалам, осыпям, оползням, размывам, развеиванию, проседаниям, провалам. Образовавшиеся формы рельефа формируют новые природные комплексы, перемещение пород нарушает естественный режим поверхностных, почвенных, грунтовых вод, возможно образование поверхностных водоемов, заболачивание территории. Сведение традиционного растительного покрова, распашка земель, выпас скота приводят к эрозии и смыву земель, образуются вторичные формы рельефа (овраги, балки, промоины и т. д.). Ежегодно эрозия и дефляция выносят из ландшафтов суши миллиарды тонн гумусовых частиц. Эти процессы, как правило, необратимы.

Изменения условий поверхностного, внутрипочвенного, грунтового стока оказывают влияние на влагооборот ландшафта. Воздействуя на физические факторы режимов стока рек, искусственное регулирование стока и русл рек за многолетний период изменяет водный баланс водосбора. Преобразование составляющих водного баланса на водосборе изменяет функционирование всех сопряженных с ним геосистем. Осушение, орошение, агротехнические мероприятия, застройка территорий, искусственное покрытие, изменение инфильтрационной и фильтрационной способности почв, условий поверхностного стока, запасов влаги и других факторов изменяют водный баланс и влагооборот ландшафта.

Замещение естественных биоценозов искусственными снижает общую биологическую продуктивность, обедняет почвы, снижает интенсивность биологического круговорота веществ. В тундре, лесах, степях, пустыне сведение растительного покрова сопровождается разрушением почвенной структуры, изменением условий почвообразования, истощением, смывом и развеиванием почв. Культурные растения ежегодно выносят из почвы сотни миллионов тонн азота, фосфора, калия, кальция, зольных элементов. Так, за счет получения урожая почвы со средним содержанием минеральных веществ могут быть полностью истощены за 15...50 лет. С полей с эродированными почвами азота, фосфора и калия смывается в 100 раз больше, чем вносится с удобрениями. Внесение удобрений не восполняет всех потерь, так как до 40...50 % питательных веществ, вносимых в почву, выносится с полей и вовлекается в неконтролируемую миграцию. Пестициды через питательные цепи, накапливаясь в тканях организмов, распространяются от низших звеньев цепи к высшим.

В процессе хозяйственной деятельности человека в геохимический круговоротвовлекается много соединений, самостоятельно не существующих в природе. Большая часть их - это отходы производства, использованные изделия, результат хозяйственной деятельности: удобрения, гербициды, пестициды, отбросы и др. В атмосферу попадают газы (углекислый газ, окись углерода) от сжигания на промышленных предприятиях топлива, от двигателей внутреннего сгорания (оксиды углерода, сернистый ангидрид) при сжигании нефти и угля (окислы азота, углеводороды). Твердые продукты сгорания топлива (копоть, сажа), пыль, радиоактивные выбросы распространяются на тысячи километров, попадают в почву, поверхностные и грунтовые воды, в питательные цепи. Со сточными водами распространяются кислоты, фенолы, нефтепродукты, хозяйственные и бытовые выбросы. Их источниками являются промышленные и бытовые свалки отходов (с токсичными веществами), животноводческие фермы, сельскохозяйственные поля, загрязненные удобрениями и ядохимикатами. Загрязнения распространяются с талыми водами и жидкими осадками, попадая в каналы, реки, озера и моря; необратимо загрязняют Мировой океан. Накопление или удаление элементов, участвующих в геохимическом круговороте в геосистемах, зависит от климатических условий ландшафта. Растительность в геохимическом круговороте может играть роль буфера или захватывающего концентратора.

Воздействие на ландшафт хозяйственной деятельности человека

Хозяйственная деятельность человека приводит к непреднамеренному изменению теплового баланса. Сюда относятся: поступление тепла в атмосферу при сжигании топлива, парниковый эффект при увеличении концентрации углекислого газа в атмосфере, повышение содержания аэрозолей в атмосфере, изменение отражательных характеристик деятельной поверхности и т. п. Перечисленные непреднамеренные воздействия вызывают нагрев атмосферы и тем самым приводят к необратимым изменениям в природе.

Измененные геосистемы с позиций природопользования можно классифицировать: на преднамеренно или непреднамеренно измененные; сельскохозяйственные, лесохозяйственные, промышленные, городские, рекреационные, заповедные, средозащитные в зависимости от выполняемых социально-экономических функций; слабоизмененные, измененные, сильноизмененные по сравнению с исходным состоянием; культурные, акультурные по последствиям изменения; системы с преобладанием процесса саморегуляции и с преобладанием управляющего воздействия со стороны человека в зависимости от соотношения процессов саморегуляции геосистем и управления.

По степени изменения ландшафты подразделяют: на условно неизмененные, которые не подвергали непосредственному хозяйственному использованию и воздействию. В этих ландшафтах можно обнаружить лишь слабые следы косвенного воздействия, например осаждение техногенных выбросов из атмосферы в нетронутой тайге, в высокогорьях, в Арктике, Антарктике; слабоизмененные, подвергающиеся преимущественно экстенсивному хозяйственному воздействию (охота, рыбная ловля, выборочная рубка леса), которое частично затронуло отдельные «вторичные» компоненты ландшафта (растительный покров, фауна), но основные природные связи при этом не нарушены и изменения носят обратимый характер. К таким ландшафтам относят: тундровые, таежные, пустынные, экваториальные; среднеизмененные ландшафты, в которых необратимая трансформация затронула некоторые компоненты, особенно растительный и почвенный покров (сводка леса, широкомасштабная распашка), в результате чего изменяется структура водного и частично теплового баланса; сильноизмененные (нарушенные) ландшафты, которые подверглись интенсивному воздействию, затронувшему почти все компоненты (растительность, почвы, воды и даже твердые массы твердой земной коры), что привело к существенному нарушению структуры, часто необратимому и неблагоприятному с точки зрения интересов общества. Это главным образом южно-таежные, лесостепные, степные, сухостепные ландшафты, в которых наблюдаются обезлесивание, эрозия, засоление, подтопление, загрязнение атмосферы, вод и почв; широкомасштабная мелиорация (орошение, осушение) также сильно изменяет ландшафты; культурные ландшафты, в которых структура рационально изменена и оптимизирована на научной основе, с учетом вышеизложенных принципов, в интересах общества и природы - ландшафты будущего.

Планеты, относящиеся к земной группе, -- Меркурий, Венера, Земля, Марс -- имеют небольшие размеры и массы, средняя плотность этих планет в несколько раз превосходит плотность воды; они медленно вращаются вокруг своих осей; у них мало спутников (у Меркурия и Венеры их вообще нет, у Марса -- два крохотных, у Земли -- один).

Черты сходства и различия обнаруживаются также при изучении атмосфер планет земной группы Хорошавина С.Г. Концепции современного естествознания. Курс лекций -- Ростов-на-Дону, 2006.

Меркурий

Меркурий -- четвертая по блеску планета: в максимуме блеска она почти так же ярка, как Сириус, ярче нее бывают только Венера, Марс и Юпитер. Тем не менее, Меркурий - очень трудный объект для наблюдений из-за малости его орбиты и, следовательно, близости к Солнцу. Для невооруженного глаза Меркурий - светлая точка, а в сильный телескоп у него вид серпика или неполного круга. Изменения вида (фаз) планеты с течением времени показывают, что Меркурий - это шар, с одной стороны освещенный Солнцем, а с другой - совершенно темный. Диаметр этого шара - 4870 км.

Меркурий медленно вращается вокруг своей оси, будучи всегда обращенным, к Солнцу одной стороной. Таки образом период обращения вокруг Солнца (меркурианский год) составляет около 88 земных суток, а период вращения вокруг своей оси -- 58 суток. Получается, что от восхода Солнца до его захода на Меркурии проходит год, то есть 88 земных суток. И правда, поверхность Меркурия во многом сходна с поверхностью Луны, хотя мы и не знаем, действительно ли на поверхности Меркурия имеются моря и кратеры. Меркурий обладает относительно большой плотностью среди планет Солнечной системы -- около 5,44 г/см3. Ученые предполагают, что это обусловлено наличием массивного металлического ядра (предположительно из расплавленного железа плотностью до 10 г/см3, имеющего температуру около 2000 К), содержащего более 60% массы планеты и окруженного силикатной мантией и, вероятно, корой 60 -- 100 км толщиной.

Венера

Венера наблюдается и как «вечерняя звезда» и как «утренняя звезда» - Hesperus и Phosphorus, так называли ее в античном мире. После солнца и Луны Венера - самое яркое небесное светило, а ночью освещенные ею предметы могут отбрасывать тени. Так же Венера -- ближайшая к Земле планета. Ее даже называют "сестрой Земли". И вправду -- радиус Венеры почти равен земному (0,95), ее масса -- 0,82 массы Земли. Венера довольно хорошо изучена людьми -- к планете приближались как советские АМС серии "Венера", таки американские Маринеры. Венера обращается вокруг Солнца за 224,7 земных суток, но с этой цифрой, в отличие от Меркурия, ничего интересного не связано. Весьма интересный факт связан с периодом вращения самой планеты вокруг своей оси -- 243 земных суток (в обратном направлении) и периодом вращения мощной венерианской атмосферы, которая совершает полный оборот вокруг планеты за... 4 дня! Это соответствует скорости ветра у поверхности Венеры в 100 м/с или 360 км/ч! Она имеет атмосферу, впервые открытую М. В. Ломоносовым в 1761 г. во время прохождения планеты по диску солнца. Планета окутана густым слоем белых облаков, скрывающих ее поверхность. Наличие в атмосфере Венеры густых облаков, вероятно, состоящих из ледяных кристаллов, объясняет высокую отражательную способность планеты - 60% падающего солнечного света отражается от нее. Современные ученые установили, что венерианская атмосфера на 96% состоит из углекислого газа СО2. Присутствуют здесь также азот (почти 4%), кислород, водяные пары, благородные газы и др. (всех меньше 0,1%). Основой густого облачного слоя, расположенного на высоте 50 -- 70 км, являются мелкие капли серной кислоты с концентрацией 75-80% (остальное -- вода, активно "впитываемая" капельками кислоты). На Венере существуют действующие вулканы, так, как достоверно известно, что сейсмическая и тектоническая деятельность на Венере была очень активна сравнительно недавно. Внутреннее строение этого псевдоблизнеца Земли также сходно со строением нашей планеты.

Земля

Наша земля кажется нам такой большой и прочной и столь важной для нас, что мы склонны забывать о том скромном положении, которое оно занимает в семье планет солнечной системы. Правда у Земли все же есть довольно толстая атмосфера, прикрывающая тонкий неоднородный слой воды, и даже титулованный спутник диаметром примерно в ј ее диаметра. Однако эти особые приметы Земли едва ли могут служить достаточным основанием нашему космическому «эгоцентризму». Но, будучи небольшим астрономическим телом, Земля является самой знакомой нам планетой. Радиус земного шара R=6378 км. Вращение земного шара самым естественным образом объясняет смену дня и ночи, восход и заход светил. Некоторые греческие ученые догадывались и о годичном движении Земли вокруг Солнца. Годичное движение Земли перемещает наблюдателя и этим вызывает видимое смещение более близких звезд относительно более далеких. Строго же говоря, вокруг Солнца движется центр тяжести системы Земля - Луна, так называемый барицентр; вокруг этого центра Земля и Луна описывают в течение месяца свои орбиты.

Наши представления о внутреннем строении и физическом состоянии недр земного шара основаны на разнообразных данных, среди которых существенное значение имеют данные сейсмологии (наука о землетрясениях и законах распространения упругих волн в земном шаре). Изучение распространения в земном шаре упругих волн, возникающих при землятресениях или при мощных взрывах, позволило открыть и изучить слоистое строение земных недр.

Воздушный океан, окружающий Землю, - ее атмосфера, - является ареной, на которой разыгрываются разнообразные метеорологические явления. В основном земная атмосфера состоит из азота и кислорода.

Атмосферу земли условно делят на пять слоев: тропосферу, стратосферу, мезосферу, ионосферу и экзосферу. Большое влияние на многие процессы, происходящие на нашей планете, оказывает гидросфера, или Мировой океан, поверхность которого в 2,5 раза больше площади суши. Земной шар обладает магнитным полем. За пределами плотных слоев атмосферы он опоясан невидимыми тучами из очень быстродвижущихся частиц высокой энергии. Это так называемые пояса радиации. Строение и свойства поверхности нашей планеты, ее оболочек и недр, магнитного поля и поясов радиации исследуются комплексом геофизических наук.

Марс

Когда в 1965 году американская станция Маринер-4 с малого расстояния впервые получила снимки Марса, эти фотографии вызвали сенсацию. Астрономы были готовы увидеть что угодно, только не лунный ландшафт. Именно на Марс возлагали особые надежды те, кто хотел найти жизнь в космосе. Но эти чаяния не оправдались --Марс оказался безжизненным. По современным данным радиус Марса почти вдвое меньше земного (3390 км), а по массе Марс уступает Земле в десять раз. Обращается вокруг Солнца эта планета за 687 земных суток (1,88 года). Солнечные сутки на Марсе практически равны земным --24 ч 37 мин, а ось вращения планеты наклонена к плоскости орбиты на 25), что позволяет сделать вывод о сходной с земной смене(для Земли -- 23 времен года.

Но все мечты ученых о наличии жизни на Красной планете растаяли после того, как был установлен состав атмосферы Марса. Для начала следует указать, что давление у поверхности планеты в 160 раз меньше давления земной атмосферы. А состоит она на 95% из углекислого газа, содержит почти 3% азота, более 1,5% аргона, около 1,3% кислорода, 0,1% водяного пара, присутствует также угарный газ, найдены следы криптона и ксенона. Разумеется, в такой разреженной и негостеприимной атмосфере никакой жизни существовать не может.

Среднегодовая температура на Марсе составляет примерно -60 перепады температур в течение суток вызывают сильнейшие пылевые бури, во время которых густые облака песка и пыли поднимаются до высот в 20 км. Состав марсианской почвы был окончательно выявлен при исследованиях спускаемых американских аппаратов Викинг-1 и Викинг-2. Красноватый блеск Марса вызван обилием в его поверхностных породах оксида железа III (охры). Рельеф Марса весьма интересен. Здесь присутствуют темные и светлые области, как и на Луне, но в отличие от Луны, на Марсе смена цвета поверхности не связана со сменой высот: на одной высоте могут находиться как светлые, так и темные области.

До сих пор ученым не известна природа катаклизма, вызвавшего глобальные изменения климата на Марсе, приведшие к современным условиям.